
ETAS VECU-BUILDER V1.8

User Guide

Copyright
The data in this document may not be altered or amended without special noti-
fication from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation
to this document. The software described in it can only be used if the customer is
in possession of a general license agreement or single license. Using and copying
is only allowed in concurrence with the specifications stipulated in the contract.

Under no circumstances may any part of this document be copied, reproduced,
transmitted, stored in a retrieval system or translated into another language
without the express written permission of ETAS GmbH.

© Copyright 2024 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands
belonging to the respective owners.

VECU-BUILDER V1.8 | User Guide R11 EN |10.2024

Contents

1 Introduction 6

1.1 Intended use 6

1.2 Target group 6

1.3 Data protection 6

1.4 Data and information security 6

1.4.1 Data and storage locations 6

1.4.2 Technical and organizational measures 7

2 About VECU-BUILDER 8

2.1 VECU-BUILDER on YouTube 8

2.2 Warning and error messages 9

2.3 Basics 10

2.4 Virtual ECU 10

2.5 vECU creation process workflow 11

2.6 Functional Mock-up Interface (FMI) 12

3 Installation 13

3.1 Hardware requirements 13

3.2 Preparation 13

3.3 Installation content 13

3.4 Licensing 14

3.5 Installation on Windows 10 15

3.5.1 Software requirements for Windows 10 15

3.5.2 Manual installation of VECU-BUILDER 15

3.5.3 Silent installation of VECU-BUILDER 16

3.5.4 Uninstalling VECU-BUILDER on Windows 10 17

3.6 Installation on Ubuntu 22.04 LTS 18

3.6.1 Software requirements for Ubuntu 22.04 LTS 18

3.6.2 Installing License Manager (LiMa) on Ubuntu 22.04 LTS 18

3.6.3 Opening ETAS License Manager on Ubuntu 22.04 LTS 19

3.6.4 Activating the LiMa license 19

3.6.5 Installing VECU-BUILDER on Ubuntu 22.04 LTS 20

3.6.6 Uninstalling VECU-BUILDER on Ubuntu 22.04 LTS 20

3.7 Installation on Ubuntu 22.04 LTS for WSL 21

3.7.1 Software requirements for Ubuntu 22.04 LTS on WSL 21

3.7.2 Installing WSL on Windows 21

VECU-BUILDER V1.8 | User Guide

Contents | 3

3.7.3 Installing Ubuntu 22.04 LTS on WSL 21

3.7.4 Installing dependent software packages 22

3.7.5 Installing License Manager (LiMa) on Ubuntu 22.04 LTS for WSL 23

3.7.6 Installing VECU-BUILDER on Ubuntu 22.04 LTS for WSL 24
3.7.6.1 Opening ETAS License Manager on Ubuntu 22.04 LTS for WSL 24

3.7.7 Activating the LiMa license 25

3.7.8 Uninstalling VECU-BUILDER on Ubuntu 22.04 LTS for WSL 25

3.8 Installed files and folders 26

4 VECU-BUILDER without admin credentials 29

4.1 Use of portable version without admin credentials on Windows 29

4.2 Use of portable version without admin credentials on Ubuntu 22.04 LTS 30

5 Working with VECU-BUILDER 31

5.1 Creating a new workspace 33

5.1.1 Creating a workspace on Windows 33

5.1.2 Creating a workspace on Ubuntu 22.04 LTS 35

5.2 Importing files and folders 37

5.3 Building the vECU 39

5.4 Building the FMU 40

5.5 Workspace content 41

5.6 Configuration 43

6 Exploring the examples/templates 56

6.1 Simple example 56

6.1.1 fmusim 56

6.1.2 Difference between debug and release vECUs 58
6.1.2.1 Keeping symbol information in a release FMU 59

6.1.3 InitialData functionality 59

6.1.4 eeprom functionality 64

6.1.5 Usage of link_into_project 67

6.1.6 ARXML-defined tasks 69

6.2 BCU example (only available for Windows) 70

6.2.1 Show symbol information 71

6.2.2 A2L file patching 71

6.2.3 A2L name mapping 73

6.2.4 HEX file generation 74

6.2.5 Example of additional scripts - A2L characteristics as parameters 75

6.3 EventTrigger example 76

VECU-BUILDER V1.8 | User Guide

Contents | 4

6.3.1 Event-triggered tasks 77

6.3.2 Task scheduling with task trigger defined as cyclic 77

6.4 Template for plug-in V1 (FMI2) 79

6.4.1 Plug-In feature 79

6.4.2 Plug-In configuration 81

6.4.3 Plug-In interface 82

6.4.4 What a plug-in can do with tasks 87

6.5 Template for plug-in V2 (FMI3) 88

6.5.1 Plug-In feature V2 88

6.5.2 Plug-In confuguration V2 90

6.5.3 Plug-In interface V2 91

6.5.4 What a plug-in can do with tasks V2 96

7 Controlling VECU-BUILDER 97

7.1 Manual interaction 97

7.2 Command Line Interface (CLI) 97

7.3 Ubuntu 22.04 LTS Command Line Interface 101

8 Debugging vECU 102

8.1 Debugging with Visual Studio 2019 103

8.2 Debugging with Visual Studio Code 104

9 Troubleshooting 106

9.1 CMake not found 106

9.2 Notepad++ does not open during workspace creation 107

9.3 Some breakpoints not being hit 108

9.4 (SymbolInfo.dll) the *.die file is too large to load 108

9.5 Windows cannot access localhost while using sync attribute in EEPROM 108

9.6 Redirecting function calls did not work as expected 114

9.7 License check failed 114

9.8 Building sources failed 114

9.9 Indentation errors in YAML file 115

9.10 Failed to parse symbols 116

9.11 Could not load the vECU binary 117

9.12 Skipping plug-in 119

9.13 Encoding cannot be defined for a VARVAL file 119

9.14 Encoding of DCM file is not supported 120

10 Contact information 121

VECU-BUILDER V1.8 | User Guide

Contents | 5

1 Introduction | 6

1 Introduction

In this chapter you can find information about the intended use, the addressed
target group and information about safety and privacy related topics.

1.1 Intended use
The product is designed to create a virtual ECU for microcontrollers using exist-
ing ECU source code or precompiled binaries. This virtual ECU is intended for sim-
ulation, debugging, and pre-calibration of ECU software in a computer-based
virtual simulation environmenIn general, virtual ECUs may not be real-time cap-
able. If you use a virtual ECU to control physical devices, the system may react
unexpectedly. Take suitable precautions to ensure safe operation.

ETAS GmbH cannot be made liable for damage which is caused by incorrect use
and not adhering to the safety information. Adhere to the ETAS Safety Advice
(see documentation folder).

1.2 Target group
This product is intended for skilled and qualified personnel in development of
auto-motive ECU software (e.g., function developer, application engineer, ECU
soft-ware integrator, systems engineer or calibration engineer) at OEMs, tier-1 or
tier-2 suppliers in the auto-motive industry. Technical knowledge in control unit
engineering is a prerequisite. In addition, programming knowledge in C/C++ is
required. AUTOSAR Classic knowledge is helpful.

1.3 Data protection
If the product contains functions that process personal data, legal requirements
of data protection and data privacy laws shall be complied with by the customer.
As the data controller, the customer usually designs subsequent processing.
Therefore, he must check if the protective measures are sufficient.

1.4 Data and information security
To securely handle data in the context of this product, see the next sections
about data and storage locations as well as technical and organizational meas-
ures.

1.4.1 Data and storage locations
The following sections give information about data and their respective storage
locations for various use cases.

License Management
When using the ETAS License Manager in combination with user-based licenses
that are managed on the FNP license server within the customer's network, the
following data are stored for license management purposes:

VECU-BUILDER V1.8 | User Guide

1 Introduction | 7

Data

Communication data: IP address

User data: User ID

Storage location

FNP license server log files on the customer network

When using the ETAS License Manager in combination with host-based licenses
that are provided as FNE machine-based licenses, the following data are stored
for license management purposes:

Data

Activation data: Activation ID
 l Used only for license activation, but not continuously during license

usage

Storage location

FNE trusted storage

Windows:
C:\ProgramData\ETAS\FlexNet\fne\license\ts

Linux:
/usr/share/ETAS/LiMa/fne/license/ts/

1.4.2 Technical and organizational measures
We recommend that your IT department takes appropriate technical and organ-
izational measures, such as classic theft protection and access protection to
hardware and software.

VECU-BUILDER V1.8 | User Guide

2 About VECU-BUILDER | 8

2 About VECU-BUILDER

VECU-BUILDER is a tool for building virtual ECUs (vECUs) for simulation, debug-
ging, and pre-calibration of ECU software within a computer-based virtual sim-
ulation environment.

VECU-BUILDER supports the generation of Level-1, Level-2, and Level-3 vECUs in
accordance with the Prostep Definition of vECUs.Level-4 vECUs, i.e., HEX files for
a specific target, are not supported.

VECU-BUILDER is built on Python and CMake. It can take inputs in the form of
C/C++ source codes or binaries, such as object files or shared libraries containing
symbol information. Unlike AUTOSAR Classic, the configuration of a vECU is per-
formed in a single YAML file (vEcuConf.yaml). The properties are configured
within this text-based file, which is used to define the supported features of the
vECU, such as an XCP slave or initial data as part of simulated NVRAM.

VECU-BUILDER wraps the binaries of the vECU into an FMU. These FMUs can be
integrated into any FMI-compliant simulation master.

2.1 VECU-BUILDER on YouTube
You can access a playlist on YouTube that features VECU-BUILDER and its func-
tionalities. To open the playlist, click the image below.

VECU-BUILDER V1.8 | User Guide

https://www..com/playlist?list=PLdK8AlEjocsX7X6n60nxfyj8CKf_sLnNV

2 About VECU-BUILDER | 9

2.2 Warning and error messages
VECU-BUILDER may encounter situations in which an error or a warning message
is displayed.

Errors are printed in red and indicate a severe issue which prevents the build from
succeeding.

Fig. 2-1: Error message

Warnings are printed in yellow and are meant to draw the attention to a certain
issue during the build. The issue is not as severe as an error and thus the build
continues.

Fig. 2-2: Warning message

VECU-BUILDER V1.8 | User Guide

2 About VECU-BUILDER | 10

2.3 Basics
The basic principle is to keep the data lean in a simple and smart way. The
concept is the simplification of the ECU software stack and the ARXML file. The
A2L file is patched by removing all hardware dependencies and updating memory
addresses of all inputs, outputs, measurements, and characteristics. The soft-
ware stack layers are represented by C and H files. These files are reflected in the
imported folder (vECU\imported) in the vECU build process.

The result is a stand alone FMU:

The FMU contains the model description (e.g. its variables) as XML file.

The FMU contains the access to calibration and measurement variables via
patched A2L file .

The FMU contains an executable model as DLL/SO file.

Fig. 2-3: Basic concept and result of VECU-BUILDER

2.4 Virtual ECU
A vECU is a virtualized ECU which can be used as a real ECU. With the vECU you
can test the ECU software and execute the software functionality without hard-
ware. This gives you the possibility to test the communication between the ECUs
before prototypes or hardware is available. The vECU contains the code, the para-
meters and the XCP slave as an alternative path to the HEX code.

VECU-BUILDER V1.8 | User Guide

2 About VECU-BUILDER | 11

2.5 vECU creation process workflow
The whole workflow is an iterative process to get to the final configuration of the
YAML file. The listed points provide a rough overview of the workflow. Section A
and F take place outside of VECU-BUILDER.

 A. Prepare sources
 l Fix directives that refer to header files in code
 l Generate a script collecting the files you need from the various loc-

ations you found

 B. Compile sources, incompatible sources must be removed
 l Generate new workspace
 l Copy sources into workspace
 l Build
 l Check error messages
 l Remove or patch code

 C. Link sources and create stubs
 l Solve link errors with empty stubs

 D. Define Inputs and Outputs (I/O) to make the vECU runnable
 l Use symbol information to generate I/O
 l Manually patch the sources of virtual devices
 l Use the C notation of the variables (e.g., sensor.*)

 E. Create task model to run the tasks
 l Use text format to define task model

 F. Operate for first time, apply SiL specific code changes
 l Debug code
 l Fill some stub functions with code or apply SiL specific code changes

After completing the first iteration of an vECU it can be used to perform further
steps outside of VECU-BUILDER:

Integration of the vECU with plant models and execution in a Co-Simulation
environment

Running and testing the vECU in an experimental environment

Measuring and calibrating the vECU

Debugging using a source code editor

VECU-BUILDER V1.8 | User Guide

2 About VECU-BUILDER | 12

2.6 Functional Mock-up Interface (FMI)
The Functional Mock-up Interface (FMI) is a free specification that outlines a con-
tainer and interface for exchanging dynamic simulation models. VECU-BUILDER
supports Co-simulation (CS). The FMU is provided with its own solver in Co-sim-
ulation.

For more information about FMI,see FMI standard.

Fig. 2-4 shows the general steps for Co-Simulation in FMI versions 2 and 3.

Steps 4-6 are repeated until fmi2Terminate or fmi3Terminate function is
called.

Fig. 2-4: General steps for Co-Simulation

VECU-BUILDER supports FMI2 and FMI3 by a plug-in concept. For more inform-
ation about plug-in concept, see Template for plug-in V1 (FMI2) and Template for
plug-in V2 (FMI3).

VECU-BUILDER V1.8 | User Guide

https://fmi-standard.org/

3 Installation | 13

3 Installation

This chapter provides information for preparing and performing the installation
and for licensing the software. The installation can be fulfilled for the following
operating systems:

Windows 10

Ubuntu 22.04 LTS

Ubuntu 22.04 on WSL for Windows

3.1 Hardware requirements
The following Hardware Requirements need to be met:

Processor min. 2 GHz

3 GHz Dual-Core or higher recommended

Memory min. 8 GB RAM

32 GB RAM recommended

Free Disk Space 5 GB (not including the size for application data)

>100 GB recommended

3.2 Preparation
Prior to installing, ensure that your computer meets the hardware and software
requirements. Ensure that you have the appropriate user rights based on your
operating system and network connection.

Note

If you lack appropriate user rights, contact your system administrator.

3.3 Installation content
You can download the installation content from ETAS license and download
portal. Log in using your email address, download the installation content, and
then proceed with the installation.

The installation content includes information about the open-source software
attributions, important information such as Safety Advice or the User Guide as
well as the executable installation files.

Note

If the download files or download link are not available, contact technical sup-
port for assistance.

VECU-BUILDER V1.8 | User Guide

https://license.etas.services/flexnet/operationsportal/logon.do
https://license.etas.services/flexnet/operationsportal/logon.do

3 Installation | 14

3.4 Licensing
A valid license is required to use the software. You can obtain a license in one of
the following ways:

from your tool coordinator

via the self-service portal on the ETAS website at www.etas.-
com/support/licensing

via the ETAS License Manager

To activate the license, you must enter the Activation ID that you received from
ETAS during the ordering process.

For more information about ETAS license management, see the ETAS License
Management FAQ or the ETAS License Manager help.

To open the ETAS License Manager help

The ETAS License Manager is available on your computer after the installation of
any ETAS software.

 1. From the Windows Start menu, select E > ETAS > ETAS License Manager.

or

Under Linux, use LiMaQt.sh, which you can find at the following location:
 ./usr/share/ETAS/LiMa/x32/bin/.

The ETAS License Manager opens.

 2. Click in the ETAS License Manager window and press F1.

The ETAS License Manager help opens.

VECU-BUILDER performs the following checks:

Check of the product license when building FMUs.

Check of the run time license during run time of the vECU.

Check of the GO license during build time. If it is valid, it will prevent all
license checks during run time.

VECU-BUILDER V1.8 | User Guide

https://www.etas.services/support/licensing
https://www.etas.services/support/licensing
https://www.etas.services/en/downloadcenter/37717.php
https://www.etas.services/en/downloadcenter/37717.php

3 Installation | 15

3.5 Installation on Windows 10

3.5.1 Software requirements for Windows 10
The following Software Requirements need to be met:

Required Software ETAS License Manager

CMake (version ≥3.15)

Recommended Software Notepad++

Optional Software Visual Studio 2015, 2017, 2019, 2022

Visual Studio Code

Python

3.5.2 Manual installation of VECU-BUILDER
 1. Navigate to the directory where the installation file is located and execute

the VECU_BUILDER_installer_1.8.0.exe file.

The Setup Wizard opens.

 2. Click Next.

The Safety Advice window opens.

 3. Read the Safety Advice carefully, then select "I read and accept the Safety
Advice".

 4. Click Next.

The Installation Path window opens.

 5. Accept the default path (click Next) or click Browse to select a custom loc-
ation.

The Ready to Install window opens.

 6. Click Install.

The installation is performed, its progress is shown via a progress bar.

 7. Click Next.

The Third-party Software window opens.

 8. Install CMake (required) and Notepad++ (recommended).

See the links below in the installation dialog:

CMake (version 3.15 or higher)

Notepad++

 9. Click Next.

The Completing VECU-BUILDER Setup window opens.

 10. Optional:To open the documentation folder ,activate the Open VECU-
BUILDER documentation checkbox.

 11. Click Finish.

The installation is completed, and you can use VECU-BUILDER.

VECU-BUILDER V1.8 | User Guide

https://cmake.org/download/
https://notepad-plus-plus.org/downloads/

3 Installation | 16

3.5.3 Silent installation of VECU-BUILDER
You can also use silent installation in addition to manual installation. The install-
ation process varies based on whether you use the Command Prompt or the
PowerShell.

Silent installation using command prompt
 1. Open the command prompt.

 2. Navigate to the directory where the installer (VECU-BUILDER_
installer_1.8.0.exe) is located.

 3. Install VECU-BUILDER using the following command:
start cmd.exe /c VECU-BUILDER_installer_1.8.0.exe /S

/INST="path_to_installation_dir" /EULAAccepted="YES"

/SafetyHintsAccepted="YES"

where path_to_installation_dir contains a path to a directory
where the software is to be installed.

A new command prompt window opens and installation starts.

VECU-BUILDER V1.8 | User Guide

3 Installation | 17

Silent installation using PowerShell
 1. Open the PowerShell.

 2. Navigate to the directory where the installer (VECU-BUILDER_
installer_1.8.0.exe) is located.

 3. Install VECU-BUILDER using the following command:
Start-Process -FilePath".\VECU-BUILDER_installer_

1.8.0.exe/" -ArgumentList "/c /S /INST= path_to_install-

ation_dir /EULAAccepted=YES /SafetyHintsAccepted=YES" -

Wait

where path_to_installation_dir contains a path to a directory
where the software is to be installed.

Or

Install VECU-BUILDER using the following command:
Start-Process -FilePath " path_to \VECU-BUILDER_

installer_1.8.0.exe/" -ArgumentList "/c /S /INST= path_

to_installation_dir /EULAAccepted=YES /SafetyHint-

sAccepted=YES" -Wait

where path_to contains the path where the installer (VECU-BUILDER_
installer_1.8.0.exe) is located and path_to_installation_dir
contains a path to a directory where the software is to be installed.

Installation starts.

3.5.4 Uninstalling VECU-BUILDER on Windows 10
 1. Open the location where you installed VECU-BUILDER.

If you used the default installation location, you can find it under

C:/Program Files/ETAS/VECU-BUILDER

 2. Execute the uninstall.exe with double-click.

VECU-BUILDER V1.8 | User Guide

3 Installation | 18

3.6 Installation on Ubuntu 22.04 LTS

3.6.1 Software requirements for Ubuntu 22.04 LTS
The following Software Requirements need to be met:

Required Software ETAS License Manager

cmake

build-essential

gcc-multilib

g++-multilib

libssl-dev:i386

linux-libc-dev:i386

xterm

Optional Software Visual Studio Code

Python

nano

3.6.2 Installing License Manager (LiMa) on Ubuntu 22.04 LTS
Prior to installing VECU-BUILDER, you need to manually install the ETAS License
Manager (LiMa).

The installation debian packages for LiMa are delivered next to the VECU-
BUILDER installation debian package.

Fig. 3-1: LiMa installation debian packages

 1. Navigate to the directory where the LiMa debian Package files are located.

 2. Install LiMa using the following command:

sudo apt install ./LiMa-1.8.11.24-Linux.deb

 3. Install LiMaX64 unsing the following command:

sudo apt install ./LiMaX64-1.8.11.24-Linux.deb

LiMa and all its components are installed.

VECU-BUILDER V1.8 | User Guide

3 Installation | 19

3.6.3 Opening ETAS License Manager on Ubuntu 22.04 LTS
 1. Navigate to the following direction:

/usr/share/ETAS/LiMa/x32/bin

 2. Open a new terminal.

 3. Enter the following command:

./LiMaQt.sh

LiMa was opened.

3.6.4 Activating the LiMa license
There are several possibilities to activate the license. For more information about
ETAS license management, see the ETAS License Management FAQ or the ETAS
License Manager help.

VECU-BUILDER V1.8 | User Guide

https://www.etas.services/en/downloadcenter/37717.php

3 Installation | 20

3.6.5 Installing VECU-BUILDER on Ubuntu 22.04 LTS
 1. Navigate to the directory where the Debian Software Package file (VECU-

BUILDER_installer_1.8.0.deb) is located.

 2. Open a new terminal.

 3. Install VECU-BUILDER using the following command:

sudo apt install ./VECU-BUILDER_installer_1.8.0.deb

Note

VECU-BUILDER has dependencies on other software. The dependent
software packages will be installed during the installation. An Internet
connection is required to install the dependent software packages.

 4. Accept the installation of dependent packages.

The packages are selected and unpacked.

 5. Accept the Safety Advice.

The VECU-BUILDER package deployment is completed.

 6. Log out and log in to enable environment variables to be set.

3.6.6 Uninstalling VECU-BUILDER on Ubuntu 22.04 LTS
 1. Open a new terminal.

 2. Uninstall VECU-BUILDER using the following command:

sudo apt remove vecu-builder

You are asked if you want to continue uninstalling.

 3. To continue uninstalling, enter <Y> and press <ENTER>.

The VECU-BUILDER package is removed.

VECU-BUILDER V1.8 | User Guide

3 Installation | 21

3.7 Installation on Ubuntu 22.04 LTS for WSL
It is possible to create a Linux-vECU from a Windows host. To be able to create a
Linux-vECU from a Windows host, the following prerequisites must be met:

WSL is installed on Windows.

Ubuntu 22.04 LTS is installed on WSL.

LiMa is installed on WSL.

VECU-BUILDER is installed on WSL.

3.7.1 Software requirements for Ubuntu 22.04 LTS on WSL
The following Software Requirements need to be met:

Required Soft-
ware

ETAS License Manager

cmake

build-essential

gcc-multilib

g++-multilib

libssl-dev:i386

linux-libc-dev:i386

gnome-terminal (for dialog mode softwares)

Optional Soft-
ware

Visual Studio Code (for debugging, installed on Windows com-
puter host)

Python

nano

gdb (for debugging)

3.7.2 Installing WSL on Windows
To install WSL on Windows, see Install WSL command.

3.7.3 Installing Ubuntu 22.04 LTS on WSL
 1. Open PowerShell.

 2. Check what distributions are available online in PowerShell using the fol-
lowing command:

wsl --list --online

 3. Install Ubuntu 22.04 LTS on WSL using the following command:

wsl --install -d ubuntu-22.04

Ubuntu 22.04 LTS is installed.

VECU-BUILDER V1.8 | User Guide

https://learn.microsoft.com/en-us/windows/wsl/install

3 Installation | 22

3.7.4 Installing dependent software packages
In order to install VECU-BUILDER you need to install dependent software pack-
ages.

Note

The installation of dependent software packages requires unrestricted inter-
net access. If your computer is not permitted to connect to the official package
repositories, the sudo apt commands will fail. For further information, contact
your system administrator.

Note

Downloading dependencies or installing VECU-BUILDER only runs in WSL1, work-
ing with VECU-BUILDER only runs in WSL2. Ensure that the WSL version aligns
with the specific action. If necessary, you need to change the version.

For WSL1:
 l wsl --set-version Ubuntu-22.04 1

For WSL2:
 l wsl --set-version Ubuntu-22.04 2

 1. In PowerShell, check the WSL Ubuntu version using the following com-
mand:

wsl -l -v

If it is not 1, set the version to 1, using the following command:

wsl --set-version Ubuntu-22.04 1

 2. Open Ubuntu 22.04 LTS command line interface.

 3. Install the i386 architecture using the following command:

sudo dpkg --add-architecture i386

 4. Install libc6-i386 using the following command:

sudo apt install -y libc6-i386

 5. Install lsb using the following command:

sudo apt install -y lsb

 6. Run a package update using the following command:

sudo apt update

 7. Run a package upgrade using the following command:

sudo apt upgrade

 8. Install gnome-terminal using the following command:

sudo apt install gnome-terminal

VECU-BUILDER V1.8 | User Guide

3 Installation | 23

You need gnome-terminal for debugging, ETAS License Manager (LiMa)
and the Dialog mode.)

 9. Install gdb using the following command:

sudo apt install gdb

You need gdb for debugging.

3.7.5 Installing License Manager (LiMa) on Ubuntu 22.04 LTS for WSL
Prior to installing VECU-BUILDER, you need to manually install the ETAS License
Manager (LiMa).

The installation debian packages for LiMa are delivered next to the VECU-
BUILDER installation debian package.

Fig. 3-2: LiMa installation debian packages

 1. ln order to install LiMa copy the required installation debian packages for
LiMa to user home on Ubuntu.

 2. Open Ubuntu 22.04 LTS command line interface.

 3. Install LiMa using the following command:

sudo apt install ./LiMa-1.8.11.24-Linux.deb

 4. Install LiMaX64 using the following command:

sudo apt install ./LiMaX64-1.8.11.24-Linux.deb

LiMa and all its components are installed.

VECU-BUILDER V1.8 | User Guide

3 Installation | 24

3.7.6 Installing VECU-BUILDER on Ubuntu 22.04 LTS for WSL

Note

The installation of VECU-BUILDER only works if you have unrestricted access to
the internet. The sudo apt commands will fail if your computer is not allowed
to connect your Linux to the official package repositories. In this case, ask your
IT department for help.

 1. ln order to install VECU-BUILDER copy VECU-BUILDER_installer_1.8.0.deb
to user home on Ubuntu.

 2. Install VECU-BUILDER using the following command:

sudo apt install ./VECU-BUILDER_installer_1.8.0.deb

Note

VECU-BUILDER has dependencies on other software. The dependent
software packages will be installed during the installation. An Internet
connection is required to install the dependent software packages.

 3. Close and restart Ubuntu 22.04 LTS.

To create a workspace using WSL Ubuntu 22.04 LTS, see Ubuntu 22.04 LTS Com-
mand Line Interface.

3.7.6.1 Opening ETAS License Manager on Ubuntu 22.04 LTS for WSL
Prerequisites:

Ensure to have the latest Ubuntu 22.04 LTS version and all related pack-
ages installed.

Ensure to have XTerm (Ubuntu-22.04) installed.

Ensure to have UXTerm (Ubuntu-22.04) installed.

Fig. 3-3: UXTerm and XTerm for Ubuntu 22.04 LTS

VECU-BUILDER V1.8 | User Guide

3 Installation | 25

For more information about running Linux GUI apps on the Windows Subsystem
for Linux see Run Linux GUI apps on the Windows Subsystem for Linux.

 1. Open PowerShell.

Set WSL Ubuntu 22.04 LTS version to 2 using the following command:

wsl --set-version Ubuntu-22.04 2

 2. Open Ubuntu 22.04 LTS and change directory using the following com-
mand:

cd /usr/share/ETAS/LiMa/x32/bin

 3. Open LiMaQt.sh using the following command:

LiMaQt.sh

LiMa was opened.

3.7.7 Activating the LiMa license
There are several possibilities to activate the license. For more information about
ETAS license management, see the ETAS License Management FAQ or the ETAS
License Manager help.

3.7.8 Uninstalling VECU-BUILDER on Ubuntu 22.04 LTS for WSL
 1. Open Ubuntu 22.04 LTS command line interface.

 2. To uninstall, execute the following command:

sudo apt remove vecu-builder

You are asked if you want to continue uninstalling.

 3. To continue uninstalling, enter <Y> and press <ENTER>.

The VECU-BUILDER package is removed.

VECU-BUILDER V1.8 | User Guide

https://learn.microsoft.com/en-us/windows/wsl/tutorials/gui-apps
https://www.etas.services/en/downloadcenter/37717.php

3 Installation | 26

3.8 Installed files and folders

VECU-BUILDER software
The default installation location is

C:/Program Files/ETAS/VECU-BUILDER/1.8.0 on Windows

or

/opt/etas/VECU-BUILDER/1.8.0 on Ubuntu 22.04 LTS and Ubuntu 22.04
LTS on WSL.

It is recommended not to alter the installation location.

An environment variable of VECUBUILDER_HOME points to this folder.

Fig. 3-4: Installation content (left: Windows, right: Ubuntu 22.04 LTS)

This folder contains multiple subfolders and a one command/shell script:

3rd_party: Contains the third party software of fmusim and MinGW.

bin: Contains library and execution files for the build process. These files
are important for the build and must not be altered.

build: Contains templates, resources, and scripts for the build process.
These files are important for the build and must not be altered.

documentation: Contains the VECU-BUILDER User Guide, the OSS Attri-
bution and the ETAS Safety Advice documents.

CreateWorkspace.bat/ CreateWorkspace.sh: Creates a new work-
space. After executing, you will be guided through the process step by
step.

VECU-BUILDER V1.8 | User Guide

3 Installation | 27

VECU-BUILDER examples/templates
You can find ready-to-use examples and templates in the following location:

C:/ProgramData/ETAS/VECU-BUILDER/Examples_1.8.0 on Windows

or

/opt/etas/VECU-BUILDER/Examples_1.8.0 on Ubuntu 22.04 LTS and
Ubuntu 22.04 LTS on WSL.

An environment variable of VECUBUILDER_EXAMPLES points to this folder.

The following examples and templates are delivered along with the software:

additional_scrpts_library

BCU (Body Control Unit) - only for Windows

EventTriggerExample

plugin_template_v1_FMI2

plugin_template_v2_FMI3

SimpleExample

SimpleExample_Plugin_v1_FMI2

SimpleExample_Plugin_v2_FMI3

Fig. 3-5: Delivered examples/templates (left: Windows, right: Ubuntu 22.04 LTS)

VECU-BUILDER workspaces
The default folder is recommended as the location for all your workspaces, where
you can create a dedicated subfolder for each workspace.

The default folder is created during the installation process under

C:/Users/Public/Documents/VECU-BUILDER_Workspaces on Windows

or

/opt/etas/VECU-BUILDER_Workspaces on Ubuntu 22.04 LTS and Ubuntu
22.04 LTS on WSL.

VECU-BUILDER V1.8 | User Guide

3 Installation | 28

Access to artefacts in Windows
You can access all artefacts in Windows via their respective Start Menu entries.

Fig. 3-6: Start Menu entries

VECU-BUILDER V1.8 | User Guide

4 VECU-BUILDER without admin credentials | 29

4 VECU-BUILDER without admin credentials

You can use VECU-BUILDER without Admin credentials. If you lack admin cre-
dentials, you can use VECU-BUILDER as a portable version without needing an
installation.

4.1 Use of portable version without admin credentials on Windows
Prerequisites:

Ensure that ETAS License Manager (LiMa) is installed and a valid license is
available.

To use VECU-BUILDER portable version:

 1. Extract VECU-BUILDER_portable_1.8.0_windows.zip to some folder,
such as C:/PortableTools/.

 2. Open a new command prompt.

 3. Set environment variables using the following commands:
 l SET VECUBUILDER_EXAMPLES=<C:/PortableTools/>/VECU-

BUILDER_portable_1.8.0_win-

dows\$LOCALAPPDATA\ETAS\VECU-BUILDER\EXAMPLES_1.8.0

 l SET VECUBUILDER_HOME=<C:/PortableTools/>VECU-BUILDER_

portable_1.8.0_windows\1.8.0

 4. Log off and log in again.

You can now create a new workspace using CreateWorkspace.bat
under VECU-BUILDER_portable_1.8.0_windows\1.8.0.

For more information about Working with VECU-BUILDER and VECU-
BUILDER Examples/Templates, see VECU-BUILDER software, VECU-
BUILDER examples/templatesWorking with VECU-BUILDER and Exploring
the examples/templates.

VECU-BUILDER V1.8 | User Guide

4 VECU-BUILDER without admin credentials | 30

4.2 Use of portable version without admin credentials on Ubuntu
22.04 LTS
Prerequisites:

Ensure that License Manager (LiMa)is installed and a valid license is avail-
able.

To install LiMa on Ubuntu 22.04 LTS, see Installing License Manager (LiMa)
on Ubuntu 22.04 LTS.

To use VECU-BUILDER portable version:

 1. Navigate to the directory where the Debian Software Package file VECU-
BUILDER_installer_1.8.0.deb is located.

 2. Extract the directory to some folder, such as /home/<your user-
>/PortableTools.

To extract the portable version, use the following command:

dpkg-deb -R ./VECU-BUILDER_installer_1.8.0.deb /home/<y-

our user>/PortableTools

 3. Navigate to the following path:

/etc/profile.d

 4. Create a shellscript file named vecubuilder-conf.sh.

 5. Enter the following content into the shellscript file:

#!/bin/bash

export VECUBUILDER_HOME=/home/<your user-

>/PortableTools/opt/etas/VECU-BUILDER/1.8.0/

 6. Log out and log in again.

 7. Copy the content of /home/<your user>/PortableTools>/usr to any
location in the home(~) folder.

Note

You can find SW and examples under /home/<your user-
>/PortableTools/opt/etas/VECU-BUILDER/.

You can now create a new workspace.

For more information about Working with VECU-BUILDER and VECU-
BUILDER Examples/Templates, see VECU-BUILDER software, VECU-
BUILDER examples/templates, Working with VECU-BUILDER and Exploring
the examples/templates.

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 31

5 Working with VECU-BUILDER

The steps outlined in the upcoming chapters guide you in creating your first
vECU based on the Simple example. This provides an ideal starting point for your
journey into virtualization.

To become familiar with working in VECU-BUILDER, follow the path below:

Fig. 5-1: Learning path

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 32

This section guides you through the process of creating a vECU in four distinct
stages. Each stage can be triggered individually, and you can choose to continue
with the next one.

Fig. 5-2: VECU-BUILDER stages

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 33

5.1 Creating a new workspace
The very first step, required at the beginning of every project, is to create a work-
space.

Note

Workspaces are designed for parallel use.

A single workspace cannot be used for tasks running in parallel.

To create a workspace using Command Line Interface (CLI) and Ubuntu 22.04
LTS CLI, see Controlling VECU-BUILDER.

5.1.1 Creating a workspace on Windows
 1. Launch Create new workspace from the Start Menu.

A console window opens providing details on the overall process, various
stages it goes through and their individual steps.

In the first step of Create new workspace you will be asked to select a
folder where your workspace will be saved.

 2. Navigate to the default location of your workspaces
C:/Users/Public/Documents\VECU-BUILDER_Workspaces

and select an existing folder or create a new one.

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 34

The vEcuConf.yaml configuration file opens in Notepad++.

Per default, this is the configuration file of the Simple example.

 3. Keep the configuration file as is and close the Notepad ++ software.

Your new workspace is now created.

The process will automatically continue with the next stage.

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 35

5.1.2 Creating a workspace on Ubuntu 22.04 LTS

Note

In Ubuntu 22.04 LTS LTS the folder, that should be used as workspace, needs
to exist before the workspace creation is proceeded.

 1. Navigate to the folder, where the CreateWorkspace.sh is located.

The default path is
opt/etas/VECU-BUILDER/1.8.0.

 2. Open a new terminal. VECU-BUILDER will use the editor found under /us-
r/bin/editor.

 3. Enter ./CreateWorkspace.sh.

In the first step of Create new workspace you will be asked to select a
folder where your workspace will be saved.

 4. Navigate to the default location of your workspaces /opt/etas/VECU-
BUILDER_Workspaces and select an existing folder.

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 36

The vEcuConf.yaml configuration file opens.

Per default, this is the configuration file of the Simple example.

 5. Keep the configuration file as is and close it.

Your new workspace is now created.

The process will automatically continue with the next stage.

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 37

5.2 Importing files and folders
During this stage, the sources defined in your vEcuConf.yaml file are copied
into vEcu/imported folder in your workspace.

Note

During the import stage, files and folders get copied into the workspace. For
reasons of portability, it is recommended to create workspaces that are self-
contained.

After successful completion of the previous stage Creating a new workspace you
were forwarded to the next stage (Importing files and folders) and the process
continues.

If you work in an already existing workspace, you can trigger this stage by running
1_Import.bat on Windows or 1_Import.sh on Ubuntu 22.04 LTS.

After successful completion of this stage, a dialog opens. It asks whether you
want to continue with the next stage Building the vECU or inspect the results of
this stage.

Fig. 5-3: Proceed with vECU Build dialog or inspect the results (Windows)

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 38

Fig. 5-4: Proceed with vECU Build dialog or inspect the results (Ubuntu 22.04
LTS)

 1. Click Yes.

Your new workspace is now created.

The process will continue with the next stage.

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 39

5.3 Building the vECU
During this stage, the sources imported into your workspace are compiled. Also
they are linked into a DLL/SO file forming the core functionality of your future
vECU.

After successful completion of the previous stage Importing files and folders and
selecting to proceed with the build of the vECU you are forwarded to the next
stage (Building the FMU) and the process continues.

If you work in an already existing workspace, you can trigger this stage by running
2_Build.bat on Windows or 2_Build.sh on Ubuntu 22.04 LTS.

Fig. 5-5: Building vECU completed (Windows)

Fig. 5-6: Building vECU completed (Ubuntu 22.04 LTS)

The process will automatically continue with the next stage.

If the process will not automatically continue with the next stage and error mes-
sages are displayed, see Building sources failed for more information.

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 40

5.4 Building the FMU
During this stage, the DLL/SO file created in the previous stage will be wrapped
into an FMU container representing your vECU.

After successful completion of the previous stage Building the vECU and select-
ing to proceed with the build of the vECU you were forwarded to the next stage
(Building the FMU) where the process completes.

Fig. 5-7: Building FMU completed (Windows)

Fig. 5-8: Building FMU completed (Ubuntu 22.04 LTS)

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 41

5.5 Workspace content
You have now successfully created the VECU-BUILDER workspace and built your
first vECU based on the provided Simple Example sources. In this chapter, you
find a description of the workspace content for Windows, Ubuntu 22.04 LTS and
Ubuntu 22.04 LTS on WSL.

Fig. 5-9: Workspace contents

The content of the workspace consists of several artefacts:

vscode folder:
 l launch.json file for vECU debugging in VS Code

build folder:
 l additional_scripts folder: Location for your project specific addi-

tional scripts
 l log folder:

Log files from executed stages
 l scripts folder: Batch and shell scripts to perform the individual stages
 l last_build_footprint.txt: Details of last performed build stage
 l RawSymbolDetails.txt: Subset of SymbolDetails and for internal

purposes only
 l SymbolDetails.txt: Symbols within your sources and their attributes

vECU folder:
 l buildArtifacts folder: Library file and its associated debug inform-

ation
 l CMake folder: CMake project artifacts
 l imported folder: All imported artifacts
 l CMakeLists.txt: Set of directives and instructions for building your

sources

1_Import.bat/1_Import.sh
File to trigger the Importing files and folders stage.

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 42

2_Build.bat/2_Build.sh
File to trigger the Building the vECU stage.

3a_CheckFMU.bat/3a_CheckFMU.sh
File to call fmusim and inspect the vECU outputs.

3b_StartDebugger.bat/3b_StartDebugger.sh
File to call MSVC or VS Code as debugger.

3c_ShowSymbolDetails.bat/3c_ShowSymbolDetails.sh
File to call Notepad++/new Terminal and display the Symbol Details.

3d_RemoveGoLicense.bat/3d_RemoveGoLicense.sh
File to remove the GO license from the vECU (only relevant if vECU was
built with GO-license).

SimpleExample.fmu

Release version of your vECU, for more information, see Simple example.

SimpleExample_debug.fmu

Debug version of your vECU, for information, see Simple example.

vEcuConf.yaml

YAML configuration file, for more information, see Configuration.

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 43

5.6 Configuration
The YAML file contains the configurations for the import and build process as well
as for the vECU itself. It is the only configuration you need to create and maintain.
The YAML file is divided into several sections, each section configuring a par-
ticular attribute. You are guided through the YAML file with comments on each
section and configuration attributes. Every section is structured in a stand-
ardized way:

A: comment with information on the corresponding section

B: configuration attributes and values

The following is a list of all attributes available in the YAML file:

version

This is the version of the used YAML file schema and must not be changed.

build_mode

You can select between 2 modes:

build_sources: You import source code (either as AUTOSAR Classic com-
pliant or legacy C-code), header files, and static libraries. VECU-BUILDER
then builds your vECU in the form of an FMU container.

The vECU will be named <fmu_name>.fmu.

import_compiled:

You import an existing, already compiled and linked, software in the form of
a DLL/SO containing the functionality of your vECU. VECU-BUILDER then
wraps it in an FMU container. VECU-BUILDER sets up the inputs, outputs
and tasks, patches the A2L file, sets up the XCP slave port, etc.

fmu_name

Enter the name of your vECU.

The code of your vECU is located inside the FMU in the folder
resources/<fmu_name>.dll/so.

This and other DLL/SO files are loaded and executed by the FMU runner.

import_into_project

Enter the paths to the files and folders to be imported.

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 44

You can specify paths to folders and/or individual files such as *.c, *.h,
*.cpp, *.hpp or *.zip archives which will be extracted during import.

The import target is vEcu/imported folder in your workspace.

You can use environment variables like this:

"${VECUBUILDER_EXAMPLES}\SimpleExample\eeprom_data.txt"

link_into_project

To create a symbolic link; use link_into_project.

A symbolic link is a reference to a file or directory in a file system. A sym-
bolic link is created to the default folder vEcu/imported from another dir-
ectory. This can be either the source directory or optionally a
destination subdirectory in vEcu/imported folder. You can also create
nested folders.

source: Source of the folder to be linked.

destination: Name of the linked folder or name of the linked nested
folder.

You can use environment variables like this:
${SomeEnvironmentVariable}

If you do not state a destination, the source will be linked in vECU/im-
ported/NameOfSource.

For more information about link_into_project, see Usage of link_into_pro-
ject.

import_external_compiled_vecu

Only needed if you selected import_compiled as build_mode.

That DLL/SO already contains the code of your vECU. You can skip the com-
piling and linking and just import your DLL/SO into the FMU wrapper. Here
you enter the DLL/SOname and the path for updates:

dll_so_name: The name of the DLL/SO. There must exist a corresponding
PDB file with the same filename.

get_updates_from: If VECU-BUILDER can find a DLL/SO and the PDB file
in this folder, it will update the imported DLL/SO.

You can use environment variables like this:"${SystemDrive}/Sandbox".

additional_resources

You can use additional resources to resolve dependencies by integrating
DLL/SO libraries that your software relies on into the build and execution
process. You can reference the necessary files and folders for the vECU
assembly to function properly. When adding resources, copy folders recurs-
ively (including their contents) to the root of the resources folder, while
copying files directly to the root of the resources folder. There is no limit to
the number of additional resources you can inc

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 45

Note

additional_resources does not support wildcards.

Specify all additional resources that are to be included in the FMU. Addi-
tional resources will be copied to the resources folder of the FMU during
the Building FMU stage i.e.

${VECUBUILDER_WORKSPACE}/vECU/imported/additional_

DLLs/UsedByVECU.dll for Windows

or
${VECUBUILDER_WORKSPACE}/vECU/imported/additional_

DLLs/UsedByVECU.so for Ubuntu 22.04 LTS.

You can use and include plug-ins as additional resources the same way. For
more information, see Template for plug-in V1 (FMI2) and Template for
plug-in V2 (FMI3).

architecture

Specify the architecture.

When importing sources, the setting of this attribute has to match the
integration and simulation system where the vECU is to be used.

In case you are importing an DLL/SO precompiled for either 32-bit or 64-bit
architecture, you need to set the attribute to the same.

Note

For Ubuntu 22.04 LTS only 64-bit is supported.

xcp_slave

Enter the port and IP address of the XCP slave to be setup in your vECU.

These values are transferred to the patched A2L file. The used protocol is
TCP. For more information, see A2L file patching.

Note

You can only use a socket (IP address + port + protocol) for the XCP con-
nection between INCA and XCP slave once.

If a port is busy, you must define another port in the YAML file.

operating_system

Enter the operating system. Currently Windows and Ubuntu 22.04 LTS sup-
ported.

build_tool

Set up the build tool to be used for your build.

Built tool differs between Windows and Ubuntu 22.04 LTS.

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 46

Windows

Note

VECU-BUILDER configures the build tool for the underlying CMake.

If you select Visual Studio, a Visual Studio solution is generated.

If you select MinGW Makefiles, a CMake project is generated.

These artefacts are stored in vECU/CMake folder in your workspace.

path_to_mingw: If you define a specific MinGW version, CMake builds the
sources using that MinGW version.

Ubuntu 22.04 LTS

You can select Unix Makefiles.

cmake_generator_toolset

Define which toolset should be used by CMake during the build process.

For more information, see CMAKE_GENERATOR_TOOLSET.

inputs, outputs, parameters, locals

Enter the variables you want to expose as ports of your FMU.

Inputs, outputs, parameters, and locals refer to the causality of the FMI.

You can use wildcards (* and ?) in your expressions. You can add arrays
and structures using myArray*. If your wildcard expression breaks the
YAML compatibility, enclose it in single apostrophes.

EXAMPLE

*a finds all symbols ending with an a.

You can define aliases for variables, which results in renaming of FMI ports.
The aliases are used in modelDescription.xml and the original variable
names are used in resources.txt.

Note

Variables of type enumeration will be interpreted as integers in mod-
elDescription.xml file of the FMU. The name-value mapping of enu-
merations will be ignored when enumerations are used as interfaces.
Only the integer value will be exchanged.

initial_data

To define the initial values of calibration variables, enter the path for
source and target destination

The initial data is virtually flashed into memory during initialization. The
data file in the FMU (defined by destination) is read and its values are writ-
ten to RAM. This simulates a part of the NVRAM (non-volatile RAM).

source: Location to obtain the file. During build time this file will be copied
from source.

VECU-BUILDER V1.8 | User Guide

https://cmake.org/cmake/help/latest/variable/CMAKE_GENERATOR_TOOLSET.html

5 Working with VECU-BUILDER | 47

destination: Where to store the file inside the FMU, relative to the
resources folder of the FMU (optional). This file is used during run-time.

encoding: Character encoding for DCM files (optional) specifies the
standard used for text content within the file. If the encoding is not
defined, the default UTF-8 encoding is used.

Supported formats:

VarVal: List of pairs separated by one space, where the lhs refers to the
C variable and the rhs to the value.

DCM: Format containing ASAP2 labels and their values in physical form
which are processed according to information in A2L file.

For more information, see InitialData functionality.

eeprom

Specify the eeprom simulation attributes.

source: Path where to get the file. This is used during the build.

destination: Path where to store the file relative to the resources folder
of the FMU. This is the working copy (optional).

sync: This can be a UNC path or a regular path name. When the vECU is ini-
tializing, this file is copied to destination, if it exists. When the vECU ter-
minates, the updated file in destination is copied to the sync location
(optional). To setup the UNC Path, see Windows cannot access localhost
while using sync attribute in EEPROM.

c_variables: The C variable names that store the eeprom data.

Supported format:

TXT: A line starting with # denotes a comment. All other lines contain the
data stream to be flashed to the C variables. The order of the data stream
lines corresponds to the order of the C variables listed. A data stream con-
sists of bytes in HEX format, with each byte separated by a space.

EXAMPLE

01 02 ee 4f.

In the default YAML file the sync is commented out.

For more information about eeprom, see eeprom functionality.

arxml_tasks

To retrieve tasks from ARXML files in vECU/imported folder, use arxml_
tasks. These tasks will be added to the tasks list.

Supported events:
 l INIT-EVENT
 l TIMING-EVENT

Per default, arxml_tasks are disabled. To enable arxml_tasks and
place your ARXML files in the imported folder, use enabled. For more
information about arxml_tasks, see ARXML-defined tasks.

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 48

tasks

Note

Task functions must have no arguments.

Define the tasks that are to be executed and their attributes. To simulate
the microcontroller behavior with its periodically executed functions of
your software, define the functions as tasks. You can define a task only
once, duplicated functions will be ignored.

function_name: "<function name>", without brackets, set in apo-
strophes, no arguments allowed.

trigger: Select between cyclic, initial or terminate, the default is cyclic.

initial: Functions are called from fmi2DoStep before cyclic tasks.

cyclic: Functions are called from fmi2DoStep before terminate tasks.
For more information about task scheduling with cyclic task trigger, see
Task scheduling with task trigger defined as cyclic.

Note

The period of a cyclic task must not be less than 1 ns.

terminate: Functions are called from fmi2Terminate.

fmi2_enter_init: Functions are called from fmi2En-
terInitializationMode.

fmi2_exit_init: Functions are called from fmi2Ex-
itInitializationMode.

period: <number> [in seconds], the default is 1.0.

first_call: <number> [in seconds] for the cyclic tasks, the default is
period.

priority: The lower the number, the higher the priority. The default is 0.

Note

If two functions run at the same time, the one with the lower priority runs
first.

max_calls: <number>, -1 means infinite, 0 means no call.

trigger_function: The function is written in Multiply.c. You can use
trigger_function only, if trigger is set to event. The trigger function pre-
dicts when the next event might occur and returns if the next events
needs to be triggered. You can find the defined arguments of the trigger
function in Multiply.c

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 49

trigger_inputs: A list of additional inputs that refer to variables access-
ible via symbol details. Trigger inputs must be included in Sym-
bolDetails.txt.

For more information, see EventTrigger example.

redirect_function_calls

Enter the names functions to be replaced and their substitutes.

The function signatures of the two functions must be identical. This allows
you to test the behavior of your software using alternative implementation
without changing the original source code. Also you do not need to replace
unfinished or hardware-dependent functions with mock functions.

replaced_function: Enter the function name of the function to be
replaced.

substitute_function: The function name of the function that sub-
stitutes the replaced function.

Note

Sometimes redirect_function_calls does not work as expected.
For more information, see additional_compile_flags in this chapter and
Redirecting function calls did not work as expected.

build_include_filters, build_exclude_filters

Only usable if you selected build_sources as build_mode. You can
select files and/or folders to be included or excluded in/from the vECU
build process. Files are only included into the build if they are matched by
at least one build_include_filter and are not matched by any
build_exclude_filter.

assembly_list_files

Specify your assembly list files for the build process.

Only the sources listed in a file will be passed to the compiler from the
given sources defined by build_include_filters and build_
exclude_filters.

If you did not configured assembly list files, all sources are compiled.

additional_include_directories

Only usable if you selected build_sources as build_mode.

Specify the path of the directory to be added with additional_
include_directories. This directory will be included in the list of dir-
ectories searched for include files. Additional include directories are
passed to the preprocessor.

Wildcards * and ? are allowed. The environment variable ${VECUBUILDER_
WORKSPACE} points to the workspace.

additional_defines

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 50

Only usable if you selected build_sources as build_mode.

Specify the preprocessor macro definitions you want to add. These defin-
itions are passed to the preprocessor. This is useful if you need to set or
unset some of the definitions to adapt them to the new Windows target.

Brackets (', ') must be escaped as \(', '\).

additional_compile_flags

Only usable if you selected build_sources as build_mode. addi-
tional_compile_flags will be applied to C and C++.

Specify how the compiler should work. Each individual flag must be written
in a separate line and put in single apostrophes, for example. /ZI.

The flags are written into the CMakeLists.

For more information about compling, see MSVC compiler options or gcc
compiler options.

A successful use of redirect_function_calls depends on addi-
tional_compile_flags. Only if you set additional_compile_flags
correctly, redirect_function_calls will work.

To prevent the GNU compiler from using incompatible optimizations when
redirect_function_calls feature is enabled, optimizations are dis-
abled by using the following flags:

 # - '-O0' for gcc

For more information, see Options that control optimization and Redir-
ecting function calls did not work as expected.

additional_c_compile_flags

The same prerequisites as for "additional_compile_flags" above must be
met. additional_c_compile_flags will be applied only to C.

A successful use of redirect_function_calls depends on addi-
tional_c_compile_flags. Only if additional_c_compile_flags is
set correctly, redirect_function_calls will work.

To prevent the GNU compiler from using incompatible optimizations when
redirect_function_calls feature is enabled, optimizations are dis-
abled by using the following flags:

- '-fhosted'

additional_cxx_compile_flags

The same prerequisites as for additional_compile_flags must be met.
additional_cxx_compile_flags will be applied only to C++.

A successful use of redirect_function_calls depends on addi-
tional_cxx_compile_flags. Only if you set additional_cxx_com-
pile_flags correctly, redirect_function_calls will work.

To prevent the GNU compiler from using incompatible optimizations when
redirect_function_calls feature is enabled, optimizations are dis-
abled by using the following flags:

VECU-BUILDER V1.8 | User Guide

https://learn.microsoft.com/en-us/cpp/build/reference/compiler-options-listed-by-category?view=msvc-170
https://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/Invoking-GCC.html
https://gcc.gnu.org/onlinedocs/gcc-3.4.0/gcc/Invoking-GCC.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

5 Working with VECU-BUILDER | 51

- '-fpermissive'

additional_static_libraries

Only usable if you selected build_sources for build_mode.

The libraries need to be located in the folder ./pro-
jects/vEcu/imported.

environment_variables

You can define process-level environment variables that are set by the
build process and by the FMI wrapper during the vECU execution.

EXAMPLE

PATH=c:/Temp;${PATH}

You can configure and modify these variables in one location and you can
access them from scripts and configuration files. Process-level envir-
onment variable of VECUBUILDER_WORKSPACE is created automatically
during the build process with its value pointing to the current workspace.

import_additional_scripts

To include additional files, use import_additional_scripts.

With import_additional_scripts, additional scripts are imported at
the beginning of the import stage into the following target folder:
build/additional_scripts

You can define paths to single files and to folders. If you define a path to a
folder, all files and subfolders in that folder are imported.

You can use environment variables like this: ${SomeEn-
vironmentVariable.

- '${VECUBUILDER_EXAMPLES}/additional_scripts_library/'

additional_scripts

Define additional scripts to be executed at various phases of the import
and/or the build stage.

Use batch files on Windows/shell scripts on Ubuntu to simplify the exe-
cution of your project-specific scripts, such as those implemented in
Python or Perl, if they are executable on your system. You can use these
scripts for tasks such as file manipulation, adding files to the FMU archive,
parsing etc..

command:The script to be executed by the OS, the default search path is
${VECUBUILDER_WORKSPACE}/build/additional_scripts/ (utf-8
only).

trigger: Select when your script should be executed from these options:
 l before_import

 l after_import

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 52

 l before_build_sources

 l before_build_fmus

 l after_build_fmus

priority: Specify the priority at which your script should be executed. A
lower number indicates a higher priority, with the default value set to 1.

For more information about additional_scripts, see Example of addi-
tional scripts - A2L characteristics as parameters.

patch_a2l_file

You require an A2L file to connect an MCD software such as ETAS INCA to
the running vECU. The A2L file needs to be located in the folder vEcu/im-
ported.

filename: Enter the name of your A2L file to be patched.

symbol_name_mapping

When you use A2L or DCM files, ASAP2 labels might differ from the symbol
names. If both, DCM and A2L, files are provided, then for each DCM entry,
an A2L entry of the identical ASAP2 label name must exist.

based_on_csv:

CSV file, where lhs is the symbol name and rhs is the ASAP2 label. The
CSV file must follow the following format: SYMBOL_name;ASAP2_label.
You need to use a semicolon as a delimiter.

When you use a CSV file, you can use simple string search & replace only.
Ensure that there are no header or any comments in the CSV file and every
line is treated as a data record.

Note

VECU-BUILDER removes all leading and trailing spaces before and after
the first character.

EXAMPLE

my_symbol ; ASAP2_LABEL_5

This is a valid entry and will be treated as defined below:

my_symbol;ASAP2_LABEL_5

based_on_adx:

If a mapping between ASAP2 labels and symbols is available in an ADX file
format (a proprietary format of Bosch, used exclusively within Bosch pro-
jects), you can include this file in the build to apply the mappings. When
using the ADX file format for mappings, a simple string search and replace
is applied.

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 53

Note

The content of an ADX file will be processed as is, no interpretation or val-
idation will be performed by VECU-BUILDER. The file is assumed to be
complete and correct.

based on symbol_link (only on Windows):

In A2L files, SYMBOL_LINK information refers to the linkage between sym-
bols or variables defined in the file. It provides information about how dif-
ferent symbols are related or connected to each other.

based_on_assignments:

If the right side includes a dollarsign $ (like in a reference to a group, e.g.
($1), then a regular expression search & substitute is applied. Else a simple
string search and replace is applied.

One such regular expression allows to map multiple names at once. To see
an example, see the following table.

RegEx (array)\[(\d+)\] -> $1_$2

Mapping array[1] -> array_1

The mappings can be verified by examining the JSON files appended to the
debug FMU, located in resources\mappings folder.

VECU-BUILDER will update the memory addresses of entries in the
provided A2L file. The original A2L file is renamed by appending .bak to its
name. For more information, see A2L file patching and A2L name mapping.

debug_hook

Specify whether to enable or disable a debug hook. When enabled, the
FMU execution is interrupted when the FMU is instantiated until a debug-
ger is attached. For more information, see Debugging vECU.

additional_link_flags

Only usable if you selected build_sources as build_mode.

Specify how the linker should work. You need to write each individual flag in
a separate line and needs to be put in single apostrophes, i.e. /DEBUG.

The flags are written into the CMakeLists.txt.

For more information, see MSVC linker options or gcc linker options.

simple_file_modifications

Specify file modifications that must be applied to files imported in vECU/im-
ported folder.

In case you specify multiple modifications, they will be applied sequentially
following the order in which they were specified.

The next two attributes are mandatory for all types of modifications.

VECU-BUILDER V1.8 | User Guide

https://learn.microsoft.com/en-us/cpp/build/reference/linker-options?view=msvc-170
https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html

5 Working with VECU-BUILDER | 54

file_regex: Specify the search RegEx for a file or a set of files that must
be modified.

trigger: Specify when the modification must be applied from the 2 below
options:
 l after_import (default)
 l before_build_sources

You can specify a single or multiple actions (modification types) from the 4
below options:
 l comment_line: Comment out a single line of code by adding // at the

beginning of the line.
 l search_and_replace: Replace a line of code that matches the

search_regex with the replacement.
 l insert_code_above: Insert code above a matched line.
 l insert_code_below: Insert code below a matched line.

You must specify line_regex and to which match(es) the modification
are to be applied to (apply_to) for each action from the below 3 options:
 l all_matches (default)
 l last_match

 l first_match

For insert_code_above and insert_code_below, you must specify
the code section that is to be inserted.

When youuse simple_file_modifications, consider the following pro-
cedure to ensure that modifications are not included in .bak file.

1. Get the set of files and apply the file filter.

2. Revert backups for all files to be modified: Move the .bak files to over-
write the normal filename.

→ The backup file is deleted.

3. Create the backup on all files that need to be modified, excluding files
ending with .bak.

4. Apply the file modifications to all files that need to be modified.

Note

If you need more sophisticated file modifications, use a project-specific
script via the additional_scripts.

include_symbol_details

The use of plug-ins may require that the release FMU contains symbol
information.

VECU-BUILDER V1.8 | User Guide

5 Working with VECU-BUILDER | 55

EXAMPLE

If you want to change the cycle time of "task_10ms" using a plug-in, then
the symbol name "task_10ms" must be disclosed in the release vECU.

For more information about release FMU, see Difference between debug
and release vECUs and Keeping symbol information in a release FMU.

fmi_<type>: disabled (default) or enabled. When enabled, all symbol
details of that fmi type will be included.

symbol_names: All symbol details matching the regular expressions will be
included.

fmi

You can use the functional mockup interface. Default version is 2.0. The
use of version 3.0 is also possible. Follow the convention below:

#fmi: '2.0'

For more information about FMI,see FMI standard.

VECU-BUILDER V1.8 | User Guide

https://fmi-standard.org/

6 Exploring the examples/templates | 56

6 Exploring the examples/templates

This chapter contains details on examples/templates that are designed to help
you familiarize with the features of VECU-BUILDER.

6.1 Simple example
If you followed the instructions in the chapter Working with VECU-BUILDER, you
now have a workspace on your computer based on the Simple Example.

6.1.1 fmusim
To conduct a quick smoke test of the created vECU, fmusim is delivered along
with VECU-BUILDER. You can invoke this software via the 3a_CheckFMU.bat on
Windows or 3a_CheckFMU.sh on Ubuntu 22.04 LTS. Execute this file to run the
release vECU. Alternatively, you can drag-and-drop the debug vECU into this
batch/shell script file to run the debug vECU.

fmusim opens a terminal and prints the simulation outputs.

Fig. 6-1: fmusim output

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 57

Fig. 6-2: Cutout of result.csv

An FMU, that is built by VECU-BUILDER will set the environment variable
VECUBUILDER_FMURESOURCES. The environment variable is set for the process
that runs the FMU. It is not set on system-level or user-level.

This environment variable stores the absolute path to the resources folder of
the FMU. You can find the environment variable when inspecting the process
properties in a process monitor software.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 58

6.1.2 Difference between debug and release vECUs
You find two FMUs in this workspace. One named SimpleExample.fmu (which
will be referred to as release vECU and the other one named SimpleExample_
debug.fmu (which will be referred to as debug vECU).

Extract each of these two FMU archives into its own folder and explore their con-
tents and differences.

The functional behavior of both vECUs is identical.

The debug vECU contains symbol information and additional artefacts, e.g., PDB
(when build tool is MSVC) or DIE (when build tool is MinGW). To debug and step
through your code, use the debug vECU.

When you compare the two extracted folders, you can notice that the main dif-
ference is in the resources folder.

Fig. 6-3: Comparison of debug and release vECU (GCC compiler)

The release vECU exclusively includes address information, while the debug
vECU contains both variables and function names. The release vECU protects
the IP contained in the vECU and does not contain symbol information. To share
your vECU, use the release vECU.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 59

Fig. 6-4: Comparison of resources.txt

6.1.2.1 Keeping symbol information in a release FMU
When using a plug-in in your vECU, variables and functions are accessed by
name. This is possible in a debug FMU, but not in a release FMU.

Searching for symbols in the plug-in it is done by name. In the release FMU all sym-
bols names are replaced by their memory addresses. When FMU Runner runs in
release mode, it accesses the symbols directly by addresses instead of symbol
names. As a result, SymbolDetails file like RawSymbolDetails.txt file has to be
kept in release.fmu file

Note

The release FMU does not contain the PDB/DWARF file. Thus, debugging the
release FMU is not possible. RawSymboldetails.txt is a subset of Sym-
bolDetails.txt and is used by the plug-in.

For more information, see include_symbol_details in configuration chapter.

For more information about the plug-in Feature, see Template for plug-in V1
(FMI2) and "Template for plug-in V2 (FMI3)" on page 88.

6.1.3 InitialData functionality
Usually, software function and its data are separated. While the logic of the soft-
ware function is defined in the source files, the data is stored in separate files in
various formats. Common formats for such calibration data are DCM and CDF.

VECU-BUILDER provides support of DCM format. For more information about DCM
Format, see DCM file format. A DCM file stores the data in their physical form
which typically need to be processed into ECU-internal form. This processing is
done based on COMPU_METHOD and RECORD_LAYOUT entries in an A2L file.
You need to provide the A2L file in the patch_a2l_file attribute in the YAML
file.

VECU-BUILDER V1.8 | User Guide

https://www.etas.services/download-center-files/products_ASCET_Software_Products/TechNote_DCM_File_Formats.pdf

6 Exploring the examples/templates | 60

In case the Symbols do not match the ASAP2 labels (entries in the DCM and A2L
files), you can resolve this by applying mappings. These mappings are then used
to map ASAP2 labels to their respective symbols and can be defined in one of
these three ways:

direct definition in the YAML file making use of regular expressions

via ADX file

via CSV file

via symbol_link (only available for Windows)

For more information about these options, see symbol_name_mapping section
in configuration chapter.

You also can define the initial data in the VARVAL format. These initial data will not
be processed based on entries in the A2L file neither will any mapping be applied.
Thus the VARVAL file must contain the symbols and the ECU-internal values.

Simple example contains sample files of both supported formats. You can find the
files in this folder:

C:/ProgramData/ETAS/VECU-BUILDER/Examples_1.8.0/Sim-

pleExample/init on Windows

or

/opt/etas/VECU-BUILDER/Examples_1.8.0 on Ubuntu 22.04 LTS.

The vEcuConf.yaml file is preconfigured and uses the InitialData.VarVal.

To experiment with VARVAL functionality

 1. Open Multiply.c file located within your workspace in vECU/imported
folder.

The Multiply.c file contains the variable definitions. The variables
factor1 and factor2 serve as the inputs, with assigned values of 1 and 2.
The variable product serves as the output and is calculated as the product
of factor1 and factor2.

As InitialData.VarVal file is already activated in the YAML file, it is
already used in the default Simple Example vECU.

 2. Close the source file and navigate back to the workspace.

 3. Check the output using

3a_CheckFMU.bat on Windows

or

3a_CheckFMU.sh on Ubuntu 22.04 LTS, described in fmusim.

The output for SimpleExample is 2.

 4. Change the value for factor 1 to 4.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 61

 5. Save the change.

 6. Rebuild the vECU using

2_Build.bat in the workspace on Windows

or

2_Build.sh in the workspace on Ubuntu 22.04 LTS.

 7. To show the changed output in the FMU, execute

3a_CheckFMU.bat on Windows

or

3a_CheckFMU.sh on Ubuntu 22.04 LTS.

The new output is now 8.

The initial data set in the VARVAL file are thus correctly used in the vECU.

The sources in Multiply.c stay the same. The variables are overwritten
at run time by the values of the InitialData.VarVal.

To experiment with intialData.dcm

 1. Open the .InitialData.dcm in Examples/SimpleExample/init.

 2. Change the value for factor 1 to 4.

 3. Change the value for factor 2 to 4.

 4. Save the changes.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 62

 5. Open the YAML file and navigate to the initial_data section.

 6. Uncomment the source and destination for InitialData.VarVal.

 7. Comment the source and destination for InitialData.dcm.

 8. Save the changes.

 9. Rebuild the vECU using

 2_Build.bat in the workspace on Windows

or

2_Build.sh in the workspace on Ubuntu 22.04 LTS.

 10. To show the changed output in the FMU, execute

3a_CheckFMU.bat on Windows

or

3a_CheckFMU.sh on Ubuntu 22.04 LTS.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 63

The new output is now 16.

The initial data set in the DCM file are thus correctly used in the vECU.

The sources in Multiply.c stay the same. The variables are overwritten
at run time by the values of the InitialData.dcm.

Note

You can define several files and formats. If one variable is set in multiple files,
the value of the last file is used.

For release vECU all initial data is merged into MergedInitialData.VarVal.
This VARVAL file protects the IP. Release and debug vECU behave the same. To
get the different folder structures, see Difference between debug and release
vECUs .

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 64

6.1.4 eeprom functionality
During vECU initialization, the EEPROM data is loaded from a file to RAM. The data
is saved to the file before running terminate tasks and when unloading the vECU.
This can be utilized to simulate a soft reset behavior, ensuring that EEPROM-
stored data is preserved and not lost once the vECU simulation terminates. A typ-
ical usage of this feature is the storage of total mileage information in the ESP
controller.

 1. Open vEcuConf.yaml file of SimpleExample and navigate to eeprom sec-
tion.

The eeprom_data.txt file is initially copied from VECUBUILDER_
EXAMPLES/SimpleExample/src to the workspace in vECU/imported
during the import process with standard configuration. During Sim-
pleExample.fmu build, eeprom_data.txt file is integrated into the FMU
as 1.txt in resources/eeprom folder. This happens because the
optional destination attribute is enabled. You can change the des-
tination path and file name accordingly. This file serves as the working
copy.

Note

If destination attribute is deactivated, eeprom_data.txt is integrated
into the FMU (release and debug FMu)in resources folder.

 2. Open eeprom_data.txt in imported folder and check the content.

Note

eeprom_data.txt must include the relevant data in expected HEX
format.

 3. Go back to YAML file.

In the standard configuration, the following c_variables are used:

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 65

 l eeprom_block_a: Shows the lifetime of the vECU in ms and counts, how
often vECU was powered on.

 l eeprom_block_b: Shows the last value of product calculated in the pre-
vious execution.

eeprom_data.txt contains the data stream that should be used for the
c_variables.

Note

Ensure that the order of c_variables in vEcuConf.yaml file matches the
order of the data stream in eeprom_data.txt.

 4. In eeprom_data.txt, ensure that the size of the variables in HEX format
matches with the size defined in SymbolDetails.txt.

To open SymbolDetails.txt, run

3c_ShowSymbolDetails.bat on Windows

or

3c_ShowSymbolDetails.sh on Ubuntu 22.04 LTS.

i.e. eeprom_block_b has a size of 8 bytes and comprises eeprom_block_
b.last_product which also has a size of 8 bytes.

 5. Delete the comment under sync and use the following:

sync:'C:/TEMP/eeprom_data.txt' on Windows

or

sync: '//localhost/c$/TEMP/eeprom_data.txt' on Ubuntu 22.04
LTS.

Note

Data from the imported eeprom file is used as initial data for the first sim-
ulation. After this step, the data will be always written back to the sync
path at the end of each simulation and used by the next one.

If the file is not existing in sync location, it will be created.

If the file is already existing in sync location, this file will be taken by
the first simulation run.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 66

 6. Save the changes.

 7. Rebuild the workspace using

2_Build.bat in the workspace on Windows

or

2_Build.sh in the workspace on Ubuntu 22.04 LTS.

 8. To start the simulation, execute

3a_CheckFMU.bat on Windows

or

3a_CheckFMU.sh on Ubuntu 22.04 LTS.

 9. Navigate to

C:/TEMP on Windows

or

//localhost/c$/TEMP on Ubuntu 22.04 LTS.

eeprom_data.txt was added to sync location.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 67

6.1.5 Usage of link_into_project
You can link folders into your project. When you copy a file or folder, its contents
are duplicated. Changes made to one copy do not affect the other.

In contrast, creating a link generates a file or folder that references the same con-
tent. Changes to one linked item are reflected in both. A link acts as an additional
name for the same file or folder. It exists only once on the file system and occu-
pies space just once. This method is useful for conserving disk space.

To use link_into_project

 1. Open vEcuConf.yaml file of SimpleExample.

 2. Navigate to link_into_project section.

With the standard configuration, the content of VECUBUILDER_
EXAMPLES/SimpleExample/src was linked into imported/sources.

 3. To add a new linked folder, add the respective source and destination
path.

 4. Save your changes.

 5. Import the files and folders using

1_Import.bat in the workspace on Windows

or

1_Import.sh in the workspace on Ubuntu 22.04 LTS.

 6. As there are already sources in the workspace, they will be overwritten.

Agree to the deletion by clicking Yes.

The files and folders are imported.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 68

 7. Proceed as described in Creating a new workspace.

The folder is linked into vEcu/imported.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 69

6.1.6 ARXML-defined tasks
To retrieve tasks from ARXML files, you can use arxml_tasks in the YAML file. To
retrieve tasks from ARXML files, enable arxml_tasks and ensure the ARXML
files are located in the vECU/imported folder. VECU-BUILDER will read all the
ARXML files and will take all the timing and init tasks.

To use arxml_tasks by using import_into_project

 1. Open vEcuConf.yaml file in your workspace.

 2. Navigate to arxml_tasks section.

 3. Uncomment arxml_tasks.

 4. Change the value to enabled.

 5. Navigate to import_into_project section.

 6. Enter the paths to the ARXML files or folders containing the ARXML files to
be imported.

 7. Save your changes.

 8. Rebuild the workspace using

1_Import.bat in the workspace on Windows

or

2_Import.sh in the workspace on Ubuntu 22.04 LTS.

The import target is the vEcu/imported folder in your workspace.

arxml_tasks.json file was created in the build folder.

To use arxml_tasks by manually copying ARXML files

 1. Open vEcuConf.yaml file in your workspace.

 2. Navigate to arxml_tasks section.

 3. Uncomment arxml_tasks.

 4. Change the value to enabled.

 5. Save your changes.

 6. Place your ARXML files into vECU/imported folder.

 7. Rebuild the workspace using

2_Build.bat in the workspace on Windows

or

2_Build.sh in the workspace on Ubuntu 22.04 LTS.

arxml_tasks.json file was created in the build folder.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 70

6.2 BCU example (only available for Windows)
To create a workspace based on the BCU example, follow the steps described in
Creating a new workspace to the point where the YAML file opens in Notepad++.

 1. Replace the entire content of the YAML file with the content of prepared
BCU configuration YAML file located in:

C:/ProgramData/ETAS/VECU-BUILDER/Examples_1.8.0/BCU on Win-
dows.

A2L file patching is enabled In the YAML file.

 2. Continue the process as described in Working with VECU-BUILDER.

When the A2L file patching is enabled, a HEX file is generated during the
build process and is available in the workspace after the build. For more
information see patch_a2l_file and HEX file generation.

Note

The HEX file will only be part of the workspace if the A2L file patching is
activated.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 71

6.2.1 Show symbol information
To see all the symbols available in your vECU, open the SymbolDetails.txt
file.

 1. To see the details, run the command:

3c_ShowSymbolDetails.bat on Windows.

A text editor window opens and symbol details are shown.

Fig. 6-5: Symbol Details of BCU example

6.2.2 A2L file patching
Most ECU software authoring tools can generate an A2L file for you. It contains
the addresses of your labels for a specific target. In addition, it can contain soft-
ware-specific statements or even non-standard clauses. The label addresses of
a vECU target differ from the addresses of a physical ECU target. This means that
the original A2L file cannot be used for an XCP connection with a vECU target.

The generation of A2L files is an intricate task. VECU-BUILDER does not include
this functionality. Instead, VECU-BUILDER reads, modifies, and writes a given A2L
file. This patching procedure preserves most of the original contents of the A2L
file but changes all addresses to those of the vECU target. A backup copy of the
original A2L file is preserved (named as *.a2l.bak).

VECU-BUILDER includes its own XCP slave software component. Currently, it sup-
ports TCP connections only. The communication parameters for an XCP con-
nection are part of an A2L file. VECU-BUILDER patches in the values for TCP port
and IP address, which are specified in the YAML file. For instance:

Original A2L file Patched A2L file

/begin XCP_ON_TCP_IP

 0x0100 /* XCP on IP 1.0 */

 <TCPPORT> /* Port */
 /ADDRESS "<IPADDR>"

/end XCP_ON_TCP_IP

/begin XCP_ON_TCP_IP

 /0x0100 / XCP on IP 1.0 */

 12345 /* Port */

 ADDRESS "127.0.0.1"

/end XCP_ON_TCP_IP

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 72

The integrated XCP slave supports a limited subset of the commands of the
ASAM MCD-1 (XCP) standard version 1.0. It supports a limited subset of the
clauses from ASAM MCD-2 (ASAP2 / A2L) standard version 1.7.1.

If your ECU software already includes an XCP slave, it is possible to remove this
software component from the vECU software stack.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 73

6.2.3 A2L name mapping
By default, the A2L file contains the symbol names of characteristics and meas-
urements. Sometimes the symbol names in the A2L file are renamed. Because
the addresses in the A2L must refer to the original symbol names, you must map
them.

Original A2L file Mapped and patched A2L file

/begin CHARACTERISTIC Hys-

teresis_LightOffIntensity

 "unsigned integer 16bit"

 VALUE

 0x00000000

 RTAA2L_Internal_Scalar_

UnsignedWord

 0

 CompuMethods_STEP_100_

OFFSET_0

 0

 100

 DISPLAY_IDENTIFIER Hys-

teresis_LightOffIntensity

/end CHARACTERISTIC

/begin CHARACTERISTIC Hys-

tLiOfInt

 "unsigned integer 16bit"

 VALUE

 00x00003016

 RTAA2L_Internal_Scalar_

UnsignedWord

 0

 CompuMethods_STEP_100_

OFFSET_0

 0

 100

 DISPLAY_IDENTIFIER Hys-

teresis_LightOffIntensity

/end CHARACTERISTIC

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 74

6.2.4 HEX file generation
When the A2L patching mechanism is activated, VECU-BUILDER creates a HEX
file. The HEX file (BCU.hex) is located in the corresponding workspace. You can
use the HEX file for working with ETAS INCA. The HEX file contains the data INCA
considers as the so-called reference page. INCA uses these data to calculate
CRC check.

You can upload this generated HEX file while creating an INCA experiment. After
uploading the file, workflows within INCA will be enabled. For more information
about INCA and HEX file upload with INCA, see the corresponding INCA User
Guides available in the ETAS download center.

To enable settings in INCA for a successful HEX file upload:

 1. Open User Options.

 2. Click General tab.

 3. Go to Check dataset code.

 4. Ensure that the value is set to No without warning.

 5. Click OK.

Note

If the settings are not as described, INCA will display an error and the HEX file
will not be accepted.

VECU-BUILDER V1.8 | User Guide

https://www.etas.services/de/portfolio/download_center.php

6 Exploring the examples/templates | 75

6.2.5 Example of additional scripts - A2L characteristics as parameters
This is an example of how additional scripts can be used. With the following
script, it is possible to use A2L characteristics as parameters of a vECU.

To run the script

 1. To create a BCU workspace, follow the steps described in BCU example
(only available for Windows)

 2. Copy from ${VECUBUILDER_EXAMPLES}/BCU/additional_scripts
 l 6_get_characteristics.bat

 l 6_get_characteristics.py

to <My_BCU_Workspace>/build/additional_scripts.

 3. Add the path of your Python interpreter directory to the Path envir-
onmental variable.

 4. In vEcuConf.yaml file uncomment the following lines in the addi-
tional_scripts section.

 5. Start building your workspace using 1_Import.bat on Windows.

Characteristics were added in parameters section of vEcuConf.yaml
file and are also available as parameters in the built BCU.fmu.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 76

6.3 EventTrigger example
This example shows the possibility of using event-triggered tasks. Therefore you
need a function and a trigger function. The use of trigger inputs is optional. You
can add up to 16 trigger inputs. This trigger function predicts when the next
event might occur and returns if the next events needs to be triggered. You can
find the event-triggered task in the task section in the vEcuConf.yaml file.

The function name is teeth_count and the trigger function is tooth_event.

The function and the trigger function are defined in the Multiply.c file in vECU
folder of the corresponding workspace. Optional inputs of trigger_function
must be included in SymbolDetails.txt.

Fig. 6-6: Symbol Details of EventTrigger Example(Windows)

It is checked if the defined conditions of the trigger function are met. The default
check time is 4 ms. If the conditions are met, the function is called. E.g. if the con-
ditions of trigger function tooth_event are met, the function teeth_count is
called.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 77

6.3.1 Event-triggered tasks
To create a workspace based on the EventTrigger example, follow the steps
described in Creating a new workspace to the point where the YAML file opens in
Notepad++.

 1. Replace the entire content of the YAML file with the content of prepared
EventTrigger configuration YAML file located in:

C:/ProgramData/ETAS/VECU-BUILDER/Examples_

1.8.0/EventTriggerExample on Windows

or
/opt/etas/VECU-BUILDER/Examples_1.8.0/EventTrig-

gerExample on Ubuntu 22.04 LTS.

 2. Continue the process as described in Working with VECU-BUILDER.

The workspace was created.

6.3.2 Task scheduling with task trigger defined as cyclic
VECU-BUILDER does not have a built-in task scheduler. Instead, the task schedul-
ing process is handled by the simulation environment that runs the FMU. VECU-
BUILDER creates an FMU file that contains information about vECU tasks and
their properties, which the simulation environment reads and uses to schedule
the tasks.

In the tasks section of vEcuConf.yaml, you define the tasks that are supposed
to execute when the FMU is run by the simulation environment.

When the task trigger is defined as cyclic (executed periodically), the following
task properties become relevant:

period: Specifies, how long the simulation environment has to wait
between task executions

first_call: Denotes the duration before the task is initially called.

priority: Specifies, which task the simulation environment executes first, in
case two or more tasks are supposed to be executed.

max_calls:Enables the setting of a maximum limit for the total number of
task executions during a simulation run.

The first_call property determines the initial delay before the task is first
executed. Typically, it is set to zero. Nonetheless, there are instances where set-
ting a non-zero value for first_call is necessary to avoid running the same
task twice during the initial simulation step.

The repeated execution of some tasks in the very first step is by design. The con-
vention adopted by VECU-BUILDER is that the time internal used by fmi2DoStep
() is treated as right-closed, meaning the endpoint of the time interval is
included in the interval itself. This sometimes results in duplicate execution of a
task within the first simulation interval.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 78

One way to address this issue is to disregard the initial simulation interval (or mul-
tiple intervals). If this is not a viable option, the alternative is to adjust the first_
call parameter to match the period for the impacted tasks in the vEcuCon-
f.yaml file.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 79

6.4 Template for plug-in V1 (FMI2)

6.4.1 Plug-In feature
With VECU-BUILDER plug-in feature it is possible to implement an own logic at
run time into the following phases of FMU Runner:

Instantiation

Initialization

Step execution

Task execution

The phases follow the rules of FMI2 standard. For more information about FMI,see
FMI standard.

Your configured plug-in implementation occurs in form of a CMake project. This
CMake project needs to be used to implement the functionality of plug-in inter-
face. For more information, see Plug-In interface.

Within plugin_template_v1_FMI2 folder (see Installed files and folders for
installation path), the following files and folders are installed:

include folder: Includes the header files containing VECU-BUILDER type
definitions which you are not allowed to modify.

build.bat/build.sh: Script, that contains a small list of commands
which builds plugin_template shared object (DLL/SO).

CMakeLists.txt: File, which contains CMake configuration for the plu-
gin_template project.

plugin_template.cpp and plugin_template.h: Main files dedicated
for plug-in implementation.

Fig. 6-7: Installed files and folders for plug-in

The plug-in project uses two header files that defines VECU-BUILDER types. They
are located in the include folder of the project template:

plugininterface.h

vecubTypes.h

Fig. 6-8: plugin_template folder

VECU-BUILDER V1.8 | User Guide

https://fmi-standard.org/

6 Exploring the examples/templates | 80

Once you implemented your own logic, the plug-in can be included in VECU-
BUILDER as an additional resource.

As plug-in feature is supported for FMI2 and FMI3, the functions for each plug-in
are grouped in pluginInterface.h.

For plug-in version V1 (FMI2) look for #define FMI_2_VERS_1 and #ifdef
FMI_2_VERS_1 (obsolete:#define FMI2 and #ifdef FMI2.)

Note

When using the plug-in, you must use include_symbol_details.

EXAMPLE
If you want to change the cycle time of "task_10ms" using a plug-in, then
the symbol name "task_10ms" must be disclosed in the release vECU.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 81

6.4.2 Plug-In configuration
You can include plug-ins as additional ressources, i.e.:

additional_resources:

- ${VECUBUILDER_EXAMPLES}\plugin_tem-

plate\CMake\Debug\plugin_template.dll on Windows

or
additional_resources:

- ${VECUBUILDER_EXAMPLES}/Linux/plugin_tem-

plate/CMake/libplugin_template.so for Ubuntu 22.04 LTS.

Note

The plug-in can reside in a different location than ${VECUBUILDER_
EXAMPLES}\... and in vEcuconf.yaml you need to give the absolute
path to the location of the build plug-in.

Note

You can rename a plug-in. However it is mandatory to follow the conventions
mentioned below in any case:

A *.dll file (for Windows) must start with plugin. It then will be managed
as plug-in by VECU-BUILDER.

A *.so file (for Linux) must start with libplugin. It then will be managed
as plug-in by VECU-BUILDER.

If the plug-in does not follow this naming convention,VECU-BUILDER will not
consider the *.dll or *.so as plug-in.

The files are saved in .fmu file in resources folder. From here VECU-BUILDER will
load them as plug-ins.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 82

6.4.3 Plug-In interface
To see and use the plug-in interface, open pluginInterface.h in include
folder.

Plug-In functions
You can use several plug-in functions. There are optional and mandatory plug-in
functions and therefore not all functions from plug-in interface have to be imple-
mented.

Pointer and function pointers
For Visual Studio compiler on Windows and GNU complier from MinGW on
Ubuntu:

All plug-in interface functions have one argument as a pointer of type struct
VecubCallbacks1.

For Visual Studio compiler on Windows and GNU compiler on Ubuntu and GNU
compiler from MinGW on Windows and Ubuntu

All plug-in interface functions have one argument as a pointer of type struct
VecubCallbacks1. Furthermore, the structure also contains conditional com-
pilation instructions that only define certain function pointers if the PLUGIN_
EXTENSION macro is defined.

The following plug-in callback functions are available. The trigger for each plug-in
function call is related to the FMI protocol.

Callback Function Name Trigger Priority

vecubPluginVersion During fmi2Instantiate and before
vecubInstantiate1

mandatory

vecubInstantiate1 During fmi2Instantiate and after vec-
ubPluginVersion

mandatory

vecubFmi2EnterInit1 During fmi2EnterInitializationMode optional

vecubFmi2ExitInit1 During fmi2ExitInitializationMode optional

vecubPreDoStep1 At the beginning of fmi2DoStep optional

vecubPostDoStep1 At the end of fmi2DoStep optional

vecubPreTask1 Before calling a task optional

vecubPostTask1 After calling a task optional

Terminate1 During fmi2Terminate mandatory

 VecubCallbacks1 pointer keeps a list of function pointers which could be used
in order for plug-in to grab information from VECU-BUILDER.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 83

Available functionalities (callbacks) are:

logging

accessing symbol information like: address, size, symbol type, bitfield_off-
set, bitfield_length

managing task objects

handling symbols data like read and write their values

Fig. 6-9: function pointers

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 84

Example for usage of callbacks for Visual Studio compiler on Win-
dows and GNU compiler on Ubuntu
The following code visualizes how you can use callbacks for plug-in version 1.

// ===== plug-in vers. 01 =====
DllExport vecub1Status __cdecl vecubFmi2EnterInit1(const VecubCall-
backs1* vecubCallbacks)
{
 if (!vecubCallbacks)
 return vecub1Status::vecubError;

The code defines the function vecubFmi2EnterInit1 that takes a pointer to
the structure VecubCallbacks1 as input. It checks if the passed pointer vec-
ubCallbacks is valid. If not, it returns vecub1Status::vecubError.

// logging
if (vecubCallbacks->log1)
 {
 vecubCallbacks->log1("user message");
 }

It checks if the log1 function is defined in vecubCallbacks structure. If yes, it
calls the function with the argument user message.

// get symbol info
SymbolInfo* symbol = static_cast<SymbolInfo*>(vecubCallbacks->getSym-
bolInfo1("factor1"));
std::cout << "The symbol has address: " << std::hex << symbol->addr <<
std::endl;

It calls getSymbolInfo1 function to obtain information about a symbol named
factor1. The returned symbol is stored in the variable symbol. The address of
the symbol is printed using std::cout.

// get symbol accessor
PtrSymbolAccess& symbolAccessor = vecubCallbacks->getSymbolAccessor1
("factor1");
IntFloat64 val = (*symbolAccessor).get();
´val.f = 5;
(*symbolAccessor).set(val);

It calls getSymbolAccessor1 function to obtain an accessor for the factor1
symbol. The accessor is stored in the reference variable symbolAccessor. It
reads a value of type IntFloat64 from the symbol and assigns the value 5 to it.
Then, it writes the value back to the symbol.

Note

PtrSymbolAccess and symbolAccessor with its own methods became
obsolete but are still supported. They are replaced by methods like:

vecubCallbacks->getSymbolValue1

vecubCallbacks->setSymbolValue1

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 85

// get task object
Task* task{nullptr};
vecubCallbacks->getTask1("task_10ms", task);
task->setTNextCall(123);
 if (task) {
 std::cout << "FOUND! task: " << " ~ " << task->getName() <<
std::endl;
 }

It calls getTask1 function to obtain a task object with the name task_0ms. The
task object is stored in the pointer variable task. setTNextCall function is
called on the task object with the value 123 as the argument. If the task object is
valid, a message is printed with the task's name.

return vecub1Status::vecubOK;
}

It returns vecub1Status::vecubOK.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 86

Example for usage of callbacks for Visual Studio compiler on Win-
dows and GNU compiler on Ubuntu and GNU compiler from MinGW
on Windows and Ubuntu
The following code visualizes how you can use callbacks for plug-in version 1.

// ===== plug-in vers. 01 =====
DllExport vecub1Status __cdecl vecubFmi2EnterInit1(const VecubCall-
backs1* vecubCallbacks)
{
 if (!vecubCallbacks)
 return vecub1Status::vecubError;

The code defines the function vecubFmi2EnterInit1 that takes a pointer to
the structure VecubCallbacks1 as input. It checks if the passed pointer vec-
ubCallbacks is valid. If not, it returns vecub1Status::vecubError.

// logging
if (vecubCallbacks->log1)
 {
 vecubCallbacks->log1("user message");
 }

It checks if the log1 function is defined in vecubCallbacks structure. If yes, it
calls the function with the argument user message.

// get symbol info
SymbolInfo* symbol = static_cast<SymbolInfo*>(vecubCallbacks->getSym-
bolInfo1("factor1"));
std::cout << "The symbol has address: " << std::hex << symbol->addr <<
std::endl;

It calls getSymbolInfo1 function to obtain information about a symbol named
factor1. The returned symbol is stored in the variable symbol. The address of
the symbol is printed using std::cout.

// get symbol accessor
IntFloat64 symbolValue = vecubCallbacks->getSymbolValue1("factor1");
symbolValue.f = 10.00;
vecubCallbacks->setSymbolValue1("factor1", symbolValue);

It is using getSymbolValue1 function pointer to retrieve the value of a symbol
named "factor1" and stores it in a variable called symbolValue. It is assumed
that symbolValue is a structure containing an integer and a float value, and the
code is accessing the float value using the .f notation and setting it to 10.00.
Secondly, it is using setSymbolValue1 function pointer to update the value of
the factor1 symbol with the modified symbolValue.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 87

// get task object
Task* tasknullptr{};
vecubCallbacks->getTask1("task_10ms", task);
std::cout << "Task getTaskNextCall: " << vecubCallbacks->getTaskNex-
tCall(&task) << std::endl;
std::cout << "Task setTaskNextCall: " << vecubCallbacks->setTaskNex-
tCall(&task, 1) << std::endl;
std::cout << "Task getTaskNextCall: " << vecubCallbacks->getTaskNex-
tCall(&task) << std::endl;

A variable task of type task* is created and initialized with the value nullptr.
Then the getTask1 method of the vecubCallbacks object is called to retrieve
the task named task_10ms and store it in the task variable. The methods
getTaskNextCall and setTaskNextCall of the vecubCallbacks object are
then called to get and set the next call time of the task. The results of these
method calls are then output to the console using std::cout.

return vecub1Status::vecubOK;
}

It returns vecub1Status::vecubOK.

6.4.4 What a plug-in can do with tasks
A plug-in can access a task defined in VECU-BUILDER and can change different
properties of a task at run time.

As described in Plug-In functions, you can use several functions. One of these
functions is used to get a task. The used function pointer is getTask1, which
returns a task type. For more information, see Fig. 6-9

Once the plug-in access a task, it can manage through the task interface and the
behavior of a task during run time.

The interface of the task is available in plug-in template project through the defin-
ition of task class in include/vecubTypes.h file.

In this class, you can see specific functions of task class which manage i.e the
task name, task period, or task priority.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 88

6.5 Template for plug-in V2 (FMI3)

6.5.1 Plug-In feature V2
With VECU-BUILDER plug-in feature it is possible to implement an own logic at
run time into the following phases of FMU Runner:

Instantiation

Initialization

Step execution

Task execution

The phases follow the rules of FMI3 standard. For more information about FMI,see
FMI standard.

Your configured plug-in implementation occurs in form of a CMake project. This
CMake project needs to be used to implement the functionality of plug-in inter-
face. For more information, see Plug-In interface V2.

Within plugin_template_v2_FMI3 folder (see Installed files and folders for
installation path), the following files and folders are installed:

include folder: Includes the header files containing VECU-BUILDER type
definitions which you are not allowed to modify.

build.bat/build.sh: Script, that contains a small list of commands
which builds plugin_template shared object (DLL/SO).

CMakeLists.txt: File, which contains CMake configuration for the plu-
gin_template project.

plugin_template.cpp and plugin_template.h: Main files dedicated
for plug-in implementation.

Fig. 6-10: Installed files and folders for plug-in

The plug-in project uses two header files that defines VECU-BUILDER types. They
are located in the include folder of the project template:

plugininterface.h

vecubTypes.h

Fig. 6-11: plugin_template folder

VECU-BUILDER V1.8 | User Guide

https://fmi-standard.org/

6 Exploring the examples/templates | 89

Once you implemented your own logic, the plug-in can be included in VECU-
BUILDER as an additional resource.

As plug-in feature is supported for FMI2 and FMI3, the functions for each plug-in
are grouped in pluginInterface.h.

For plug-in version V2 (FMI3) look for #define FMI_3_VERS_2 and #ifdef
FMI_3_VERS_2 (obsolete:#define FMI3 and #ifdef FMI3.)

Note

When using the plug-in, you must use include_symbol_details.

EXAMPLE
If you want to change the cycle time of "task_10ms" using a plug-in, then
the symbol name "task_10ms" must be disclosed in the release vECU.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 90

6.5.2 Plug-In confuguration V2
You can include plug-ins as additional ressources:

additional_resources:

- ${VECUBUILDER_EXAMPLES}\plugin_tem-

plate\CMake\Debug\plugin_template.dll on Windows

or
additional_resources:

- ${VECUBUILDER_EXAMPLES}/Linux/plugin_tem-

plate/CMake/libplugin_template.so on Ubuntu 22.04 LTS.

Note

The plug-in can reside in a different location than ${VECUBUILDER_
EXAMPLES}\... and in vEcuconf.yaml you need to give the absolute
path to the location of the build plug-in.

Note

You can rename a plug-in. However it is mandatory to follow the conventions
mentioned below in any case:

A *.dll file (for Windows) must start with plugin. It then will be managed
as plug-in by VECU-BUILDER.

A *.so file (for Ubuntu) must start with libplugin. It then will be managed
as plug-in by VECU-BUILDER.

If the plug-in does not follow this naming convention,VECU-BUILDER will not
consider the *.dll or *.so as plug-in.

The files are saved in .fmu file in resources folder. From here VECU-BUILDER will
load them as plug-ins.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 91

6.5.3 Plug-In interface V2
To see and use the plug-in interface, open pluginInterface.h in include
folder.

Plug-In functions
You can use several plug-in functions. There are optional and mandatory plug-in
functions and therefore not all functions from plug-in interface have to be imple-
mented.

Pointer and function pointers
For Visual Studio Compiler on Windows and GNU complier from MinGW on
Ubuntu:

All plug-in interface functions have one argument as a pointer of type struct
VecubCallbacks2.

For Visual Studio Compiler on Windows and GNU compiler on Ubuntu and GNU
compiler from MinGW on Windows and Ubuntu

All plug-in interface functions have one argument as a pointer of type struct
VecubCallbacks2. Furthermore, the structure also contains conditional com-
pilation instructions that only define certain function pointers if the PLUGIN_
EXTENSION macro is defined.

Callback Trigger Priority

vecubPluginVersion During fmi3Instantiate and before vec-
ubInstantiate2

mandatory

vecubInstantiate2 During "fmi3Instantiate" and after "vec-
ubPluginVersion"

mandatory

vecubFmi3EnterInit2 During fmi3EnterInitializationMode optional

vecubFmi3ExitInit2 During fmi3ExitInitializationMode optional

vecubPreDoStep1 At the beginning of fmi3DoStep optional

vecubPostDoStep2 At the end of fmi3DoStep optional

vecubPreTask2 Before calling a task optional

vecubPostTask2 After calling a task optional

Terminate2 During fmi3Terminate mandatory

This VecubCallbacks2 pointer keeps a list of function pointers which could be
used in order for plug-in to grab information from VECU-BUILDER.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 92

Available functionalities (callbacks) are:

logging

accessing symbol information like: address, size, symbol type, bitfield_off-
set, bitfield_length

managing task objects

handling symbols data like read and write their values

Fig. 6-12: function pointers

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 93

Example for Usage of callbacks for Visual Studio compiler on Win-
dows and GNU compiler on Ubuntu
The following code visualizes how you can use callbacks for plug-in version 2.

// ===== plug-in vers. 02 =====
DllExport vecub2Status __cdecl vecubFmi3EnterInit2(const VecubCall-
backs2* vecubCallbacks)
{
 if (!vecubCallbacks)
 return vecub2Status::vecubError;

The code defines the function vecubFmi3EnterInit2 that takes a pointer to
the structure VecubCallbacks2 as input. It checks if the passed pointer vec-
ubCallbacks is valid. If not, it returns vecub1Status::vecubError.

// logging
if (vecubCallbacks->log2)
{
 vecubCallbacks->log2("user message");
}

It checks if the log2 function is defined in vecubCallbacks structure. If yes, it
calls the function with the argument user message.

// get symbol info
SymbolInfo* symbol = static_cast<SymbolInfo*>(vecubCallbacks->getSym-
bolInfo2("factor1"));
std::cout << "The symbol has address: " << std::hex << symbol->addr <<
std::endl;

It calls getSymbolInfo2 function to obtain information about a symbol named
factor1. The returned symbol is stored in the variable symbol. The address of
the symbol is printed using std::cout.

// get symbol accessor
PtrSymbolAccess& symbolAccessor = vecubCallbacks->getSymbolAccessor2
("factor1");
VarTypes val = (*symbolAccessor).get();
val.f64 = 5;
(*symbolAccessor).set(val);

It calls getSymbolAccessor2 function to obtain an accessor for the factor1
symbol. The accessor is stored in the reference variable symbolAccessor. It
reads a value of type IntFloat64 from the symbol and assigns the value 5 to it.
Then, it writes the value back to the symbol.

Note

PtrSymbolAccess and symbolAccessor with its own methods became
obsolete but are still supported. They are replaced by methods like:

vecubCallbacks->getSymbolValue2

vecubCallbacks->setSymbolValue2

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 94

// get task object
Task* task{nullptr};
 vecubCallbacks->getTask2("task_10ms", task);
task->setTNextCall(123);
 if (task) {
 std::cout << "FOUND! task: " << " ~ " << task->getName() <<
std::endl;
 }

It calls getTask2 function to obtain a task object with the name task_0ms. The
task object is stored in the pointer variable task. setTNextCall function is
called on the task object with the value 123 as the argument. If the task object is
valid, a message is printed with the task's name.

return vecub2Status::vecubOK;
}

It returns vecub1Status::vecubOK.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 95

Example for usage of callbacks for Visual Studio compiler on Win-
dows and GNU compiler on Ubuntu and GNU compiler from MinGW
on Windows and Ubuntu
The following code visualizes how you can use callbacks for plug-in version 2.

// ===== plug-in vers. 02 =====
DllExport vecub2Status __cdecl vecubFmi3EnterInit2(const VecubCall-
backs2* vecubCallbacks)
{
 if (!vecubCallbacks)
 return vecub2Status::vecubError;

The code defines the function vecubFmi3EnterInit2 that takes a pointer to
the structure VecubCallbacks2 as input. It checks if the passed pointer vec-
ubCallbacks is valid. If not, it returns vecub1Status::vecubError.

// logging
if (vecubCallbacks->log2)
 {
 vecubCallbacks->log2("user message");
 }

It checks if the log2 function is defined in vecubCallbacks structure. If yes, it
calls the function with the argument user message.

// get symbol info
SymbolInfo* symbol = static_cast<SymbolInfo*>(vecubCallbacks->getSym-
bolInfo2("factor1"));
std::cout << "The symbol has address: " << std::hex << symbol->addr <<
std::endl;

It calls getSymbolInfo2 function to obtain information about a symbol named
factor1. The returned symbol is stored in the variable symbol. The address of
the symbol is printed using std::cout.

// get symbol accessor
 VarTypes val2 = vecubCallbacks->getSymbolValue2("factor1");
std::cout << "symbol has value: " << val2.f64 << std::endl;
 val2.f64 = 123.45;
 vecubCallbacks->setSymbolValue2("factor1", val2);

It retrieves the symbol value associated with the key factor1 using getSym-
bolValue2 method and stores it in a variable called val2 of type VarTypes. It
then prints the value of the symbol to the console using std::cout. It modifies
the value of the symbol by assigning a new value (123.45) to the f64 field of the
val2 variable. Finally, it uses the setSymbolValue2 method to update the value
of the symbol associated with the key factor1 to the new value stored in the
val2 variable.

VECU-BUILDER V1.8 | User Guide

6 Exploring the examples/templates | 96

// get task object
Task* tasknullptr{};
vecubCallbacks->getTask1("task_10ms", task);
std::cout << "Task getTaskNextCall: " << vecubCallbacks->getTaskNex-
tCall(&task) << std::endl;
std::cout << "Task setTaskNextCall: " << vecubCallbacks->setTaskNex-
tCall(&task, 1) << std::endl;
std::cout << "Task getTaskNextCall: " << vecubCallbacks->getTaskNex-
tCall(&task) << std::endl;

A variable task of type task* is created and initialized with the value nullptr.
Then the getTask1 method of the vecubCallbacks object is called to retrieve
the task named task_10ms and store it in the task variable. The methods
getTaskNextCall and setTaskNextCall of the vecubCallbacks object are
then called to get and set the next call time of the task. The results of these
method calls are then output to the console using std::cout.

return vecub2Status::vecubOK;
}

It returns vecub1Status::vecubOK.

6.5.4 What a plug-in can do with tasks V2
A plug-in can access a task defined in VECU-BUILDER and can change different
properties of a task at run time.

As described in Plug-In functions, you can use several functions. One of these
functions is used to get a task. The used function pointer is getTask2, which
returns a task type. For more information, see Fig. 6-12

Once the plug-in access a task, it can manage through the task interface and the
behavior of a task during run time.

The interface of the task is available in plug-in template project through the defin-
ition of task class in include/vecubTypes.h file.

In this class, you can see specific functions of task class which manage i.e the
task name, task period, or task priority.

VECU-BUILDER V1.8 | User Guide

7 Controlling VECU-BUILDER | 97

7 Controlling VECU-BUILDER

7.1 Manual interaction
You can operate VECU-BUILDER via the provided batch/shell scripts. For some
user inputs, such as selecting a workspace directory, the software displays dia-
logs.

7.2 Command Line Interface (CLI)
Besides the manual interaction method you can also operate VECU-BUILDER via a
Command Line Interface (CLI). VECU-BUILDER is a CLI native software, and the
batch/shell scripts allow manual interaction. For more information about the
Installation using CLI, see Silent installation of VECU-BUILDER.

The following arguments exist:

--new-project-path: Path where the workspace is to be created.

--no-dialogs: Suppress all dialogs and always select the default option.

--stop-on-success: Prevents automatic forwarding to the next stage (create
workspace, import, build).

--version: Prints the version information.

-h: Prints list of all optional arguments.

To see all CLI optional arguments and their description

 1. Open a command prompt on Windows

or

Open a terminal on Ubuntu 22.04 LTS.

 2. Execute the following command:

1_Import.bat -h for Windows

or

./1_Import.sh -h for Ubuntu 22.04 LTS.

Fig. 7-1: CLI optional arguments on Windows 10

VECU-BUILDER V1.8 | User Guide

7 Controlling VECU-BUILDER | 98

Fig. 7-2: CLI optional arguments on Windows 10

The CLI control method is ideal for integrating VECU-BUILDER into an automation
pipeline. The CLI behavior is the same as running the scripts manually. Each script
calls the next script to proceed through the stages of create a workspace,
import, build. To change this behavior, use --stop-on-success.

The following table gives an overview of which batch/shell script file uses which
arguments:

argument CreateWorkspace 1_Import 2_Build

--new-project-
path

Used (required) Ignored Ignored

--no-dialogs Used (optional) Used (optional) Used (optional)

--stop-on-success Used (optional) Used (optional) Ignored

--version Used (optional) Used (optional) Used (optional)

-h Used (optional) Used (optional)

Used (optional)

Tab. 7-1: Mapping of CLI arguments to scripts

To build the SimpleExample via two command lines

After creating the workspace, stop the process so you can copy a specific YAML
file into your workspace. Then trigger the import without
stop-on-success and let it finish the build automatically.

 1. Open a command prompt on Windows

or

Open a terminal on Ubuntu 22.04 LTS.

 2. Navigate to the directory where the installer is located executing the fol-
lowing command:

VECU-BUILDER V1.8 | User Guide

7 Controlling VECU-BUILDER | 99

cd %VECUBUILDER_HOME%.

 3. Execute the following command:

CreateWorkspace.bat on Windows

or

./CreateWorkspace.sh on Ubuntu 22.04 LTS.

with the arguments

--new-project-path <destination>

--no-dialogs

--stop-on-success

where <destination> points to your workspace folder.

Fig. 7-3: Workspace creation via CLI on Windows

Fig. 7-4: Workspace creation via CLI on Ubuntu 22.04 LTS

VECU-BUILDER V1.8 | User Guide

7 Controlling VECU-BUILDER | 100

Note

A default YAML file is used in all newly created workspaces.

Project specific YAML file can be either prepared manually or in the previous
step of your automation pipeline.

To use your project specific YAML file in this newly created workspace:

 1. Execute the following command:

copy /y <source> <destination> on Windows

Note

The argument /y suppresses the prompt and thus overwrites the des-
tination file.

or

cp -i <source> <destination> on Ubuntu 22.04 LTS.

You are asked if you want to overwrite the file.

Fig. 7-5: Copy your project specific YAML file on Windows

Fig. 7-6: Copy your project specific YAML file on Ubuntu 22.04 LTS

To continue building your workspace:

 1. Navigate to this new workspace by executing the following command:

cd <destination>.

 2. Run the command:

1_Import.bat --no-dialogs on Windows

or

./1_Import.sh --no-dialogs on Ubuntu 22.04 LTS.

VECU-BUILDER V1.8 | User Guide

7 Controlling VECU-BUILDER | 101

7.3 Ubuntu 22.04 LTS Command Line Interface
You can create a new workspace on WSL Ubuntu 22.04 LTS using the Ubuntu
Command Line Interface.

Note

Downloading dependencies or installing VECU-BUILDER only runs in WSL1, work-
ing with VECU-BUILDER only runs in WSL2. Ensure that the WSL version aligns
with the specific action. If necessary, you need to change the version.

For WSL1:
 l wsl --set-version Ubuntu-22.04 1

For WSL2:
 l wsl --set-version Ubuntu-22.04 2

 1. Open PowerShell and set WSL Ubuntu 22.04 LTS version to 2 using the fol-
lowing command:

wsl --set-version Ubuntu-22.04 2

 2. Open Ubuntu 22.04 LTS and ensure that the environment variables are set
correctly using the following command:

env | grep -i vecu

 3. Change directory using the following command:

cd $VECUBUILDER_HOME

 4. Create a new workspace using the following command:

./CreateWorkspace.sh --no-dialogs --new-project-path

/opt/etas/VECU-BUILDER_Workspaces/SimpleExample/

or

With installed gnome terminal workspace creation also works in dialog
mode using the following command:

./CreateWorkspace.sh --new-project-path /opt/etas/VECU-

BUILDER_Workspaces/SimpleExample/

A new workspace was created. For more information about workspace con-
tent, see Workspace content.

VECU-BUILDER V1.8 | User Guide

8 Debugging vECU | 102

8 Debugging vECU

VECU-BUILDER provides useful functionalities to debug your vECU. It is possible
to debug the vECU by using an Integrated Development Environment (IDE), such
as Visual Studio Code or Visual Studio.

As the folder <workspace>/vECU is a CMake project, any IDE that can import
CMake projects can be used for debugging.

During the build stage, the debugging environment and batch/shell script files
are created. This enables you to enter a debugging session in just a few clicks.

You can use the debug_hook attribute, which can be enabled in the YAML file.
vECUs built with this attribute enabled enter their instantiation and wait for a
debugger you need to attach before continuing.

Note

The VECU-BUILDER debugging functionality is intended to be used for debug-
ging of a single vECU within its workspace. If your vECU is integrated into a sim-
ulation, the debug_hook might be the best option for debugging,

The below table summarizes the possible combinations of build tool and debug-
ger:

Tab. 8-1: Debugging possibilities

Combinations marked as experimental, are neither tested nor supported and
their use is solely your responsibility.

Among the recommended combinations, two are particularly recommended for
use and are described in detail in the following chapters.

VECU-BUILDER V1.8 | User Guide

8 Debugging vECU | 103

8.1 Debugging with Visual Studio 2019
This chapter describes how you can debug a vECU built with Visual Studio 2019
using Visual Studio 2019 as the debugger.

For more information about Visual Studio 2019, see Visual Studio documentation.

To debug with Visual Studio 2019

 1. Navigate to your workspace.

 2. Execute the 3b_StartDebugger.bat file on Windows or 3b_StartDe-
bugger.sh on Ubuntu 22.04 LTS.

The VS2019 debugger is invoked and loads the CMake project.

 3. Navigate to where you want to start debugging and set a breakpoint there.

 4. In the Menu tab click Debug > Start Debugging (F5).

fmusim is invoked and the debugger is attached.

Fig. 8-1: VS 2019 Debugger attached

VECU-BUILDER V1.8 | User Guide

https://learn.microsoft.com/en-us/visualstudio/windows/?view=vs-2019&preserve-view=true

8 Debugging vECU | 104

8.2 Debugging with Visual Studio Code
This chapter describes how you can debug a vECU built with MinGW using Visual
Studio Code as the debugger.

Prerequisites for debugging with Visual Studio Code
It is obligatory to install the following packages in Visual Studio Code:

Microsoft C/C++ Extension Pack

For Debugging in WSL Ubuntu with Visual Studio Code additionally install the fol-
lowing packages:

C/C++ extensions for Visual Studio Code and WSL Ubuntu in Windows com-
puter Host

CMake extensions for Visual Studio Code and WSL Ubuntu in Windows
computer Host

CMake Tools extensions for Visual Studio Code and WSL Ubuntu in Win-
dows computer Host

gdb in Ubuntu WSL (see Installing dependent software packages.)

Debugging is not possible without installing these packages.

Visual Studio Code requires some further extensions and will prompt you to
install them by default.

For more Information about Visual Studio Code, see Visual Studio Code doc-
umentation.

To debug with Visual Studio Code in Windows

 1. Navigate to your workspace.

 2. Right-click in your workspace and select Open with Code.

Visual Studio Code opens.

 3. Navigate to where you want to start the debugging and set a breakpoint
there.

 4. Click Start Debugging (F5).

 5. In the menu panel on the left click Run and Debug.

fmusim is invoked and the debugger is attached.

VECU-BUILDER V1.8 | User Guide

https://code.visualstudio.com/docs
https://code.visualstudio.com/docs

8 Debugging vECU | 105

To debug with Visual Studio Code in Ubuntu 22.04 LTS

 1. Navigate to your workspace.

 2. Start debugging using the following command:

$./3b_StartDebugger.sh

Visual Studio Code opens.

 3. Navigate to where you want to start the debugging and set a breakpoint
there.

 4. In the menu panel on the left click Run and Debug.

 5. Click Start Debugging (F5).

fmusim is invoked and the debugger is attached.

To debug with Visual Studio Code in WSL

 1. Check if gnome-terminal and gdb are installed. If not installed, see
Installing VECU-BUILDER on Ubuntu 22.04 LTS for WSL.

 2. Navigate to your workspace.

 3. Start debugging using the following command:

./3b_StartDebugger.sh

Visual Studio Code opens.

 4. Navigate to where you want to start the debugging and set a breakpoint
there.

 5. Click Start Debugging (F5).

 6. In the menu panel on the left click Run and Debug.

fmusim is invoked and the debugger is attached.

Fig. 8-2: VS Code Debugger attached

VECU-BUILDER V1.8 | User Guide

9 Troubleshooting | 106

9 Troubleshooting

This chapter lists possible warning or error messages, their possible reasons and
a possible solution to fix the issue.

9.1 CMake not found

Fig. 9-1: CMake not found error

Possible reason

A CMake installation is required and must be registered properly (seeSoftware
requirements for Windows 10). This registry entry is used to locate the CMake
installation. If it does not exist, the build fails.

It seems that CMake is either not installed or not properly registered on your com-
puter.

Possible solution

Ensure the following:

CMake is installed (version 3.15 or higher).

Kitware and CMake keys exist in the Windows Registry.

The CMake registry key Computer\HKEY_LOCAL_
MACHINE\SOFTWARE\Kitware\CMake contains the string value
InstallDir pointing to the CMake installation path:

Fig. 9-2: Windows Registry with Kitware\CMake registry key

VECU-BUILDER V1.8 | User Guide

9 Troubleshooting | 107

9.2 Notepad++ does not open during workspace creation
Notepad++ is the recommended text editor to be used along with VECU-BUILDER.
For it to work as intended, you need to install and register it properly.

If Notepad++ does not open during the Workspace Creation stage, but Windows
Notepad opens instead it is either not installed at all or is not properly registered
on your computer.

Possible solution

Ensure the following:

Notepad++ is installed.

Notepad++ key exists in the Windows registry.

 A. For 64-bit version:
 l The Notepad++ registry key Computer/HKEY_LOCAL_

MACHINE/SOFTWARE/Notepad++ contains the string value (Default)
pointing to the Notepad++ installation path:

 B. For 32-bit version:
 l The Notepad++ registry key Computer/HKEY_LOCAL_

MACHINE/SOFTWARE/WOW6432Node/Notepad++ contains the string
value (Default) pointing to the Notepad++ installation path:

VECU-BUILDER V1.8 | User Guide

9 Troubleshooting | 108

9.3 Some breakpoints not being hit
Possible reason

Depending on your compiler configurations, the resulting vECU may be built
without some debugging information. This may result in the debugger not being
able to hit some breakpoints.

Fig. 9-3: Breakpoint not being hit

Possible solution

In order to prevent such compiler optimization, include the following pragma
statements:

For MSVC compiler: #pragma optimize("", off)

For MinGW compiler: #pragma GCC optimize ("O0")

9.4 (SymbolInfo.dll) the *.die file is too large to load
Possible reason

The operating system does not provide sufficient amount of memory required to
load the *.die file.

Possible solution

Use a computer with sufficient amount of memory.

9.5 Windows cannot access localhost while using sync attribute in
EEPROM
Possible reason

EEPROM simulation feature requires entering the value of sync sub-attribute as
UNC path.

If the defined location (e.g. C:/drive of your localhost) cannot be accessed dur-
ing the vECU execution, the data defined by the sync sub-attribute cannot be
used.

Fig. 9-4: Network Error - Localhost cannot be accessed

VECU-BUILDER V1.8 | User Guide

9 Troubleshooting | 109

Possible solution

Setup the local share and obtain the UNC path name.

To setup a local share:

 1. Navigate to the drive, you want to share. (e.g. C:/drive)

 2. Right-click the drive and click Properties.

 3. Click the Sharing tab.

 4. Click Advanced Sharing. You will need Admin Rights to proceed.

 5. Activate the checkbox Share this folder.

 6. Click OK.

VECU-BUILDER V1.8 | User Guide

9 Troubleshooting | 110

The drive is now shared and the network path is displayed.

VECU-BUILDER V1.8 | User Guide

9 Troubleshooting | 111

When you are logged in during the execution of the vECU, you need full control
permissions to the shared location.

Per default, Windows will provide permissions to everyone. The permissions
should only be provided to the user, that will be logged in during the execution of
the vECU. Therefore, the permissions must to be changed for security reasons.

To change the permissions

 1. Click Advanced Sharing. You might need Admin Rights to proceed.

 2. Click Permissions.

 3. Click Add.

 4. Enter the object name (username) to be selected.

 5. Click Check Names.

 6. Chose the displayed name.

 7. Click OK.

VECU-BUILDER V1.8 | User Guide

9 Troubleshooting | 112

 8. To mark the entry, click the user name.

 9. Activate the checkboxes Full Control and Change.

 10. To mark the entry, click Everyone.

 11. To remove the permission for everyone, click Remove.

VECU-BUILDER V1.8 | User Guide

9 Troubleshooting | 113

The group Everyone is removed and the selected user has now full per-
missions.

 12. To confirm the User Selection, click OK.

 13. To confirm the updated Advanced Sharing" properties, click OK.

 14. Close the Properties window.

VECU-BUILDER V1.8 | User Guide

9 Troubleshooting | 114

9.6 Redirecting function calls did not work as expected
Possible reason

The GNU compiler optimization level 2 (-O2) includes inline-small-func-
tions which is incompatible with redirect_function_calls.

By default VECU-BUILDER uses the compile settings RelWithDebInf, which
includes some optimizations. For gcc this uses the setting -O2, which includes
inline-small-functions.

Possible solution

Change the settings in additional_compile_flags to enable redirect_
function_calls.

There are 3 ways to deactivate the optimization:

 A. -O0: Completely deactivates optimization. This has the advantage that the
compiler time of user workspace decreases.

 B. -O1: Reduces the level of optimization from default 2 to 1.

 C. -O2 -f-no-inline-small-functions: Keeps optimization to level 2 but only dis-
ables the special optimization with -f-no-inline-small-functions.

For more information, see Options that control optimization.

9.7 License check failed

Possible reason

The LiMa installation is corrupt.

LiMa can not reach the license server.

Possible solution

Reinstall VECU-BUILDER described in Installation on Windows 10 and Install-
ation on Ubuntu 22.04 LTS or contact technical support.

Check network settings to get a connection to the license server.

9.8 Building sources failed
Possible reason

In some cases, building sources fails with various error messages. To save time,
CMake uses caches, e.g. a link to the build tool is stored.

VECU-BUILDER V1.8 | User Guide

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

9 Troubleshooting | 115

Possible solution

To fix a broken CMake cache, delete the cache and rebuild the sources.

 1. Navigate to the vECU folder.

 2. Delete everything except the imported folder.

 3. Rebuild the sources using 2_Build.bat on Windows or 2_Build.sh on
Ubuntu 22.04 LTS.

If the build fails due to CMake reason, you can find more details in build/-
log/build_cmake.log file.

9.9 Indentation errors in YAML file
Indentation errors can occur and they are difficult to detect.

Possible solution

To check for indentation errors in YAML file, use a YAML Checker. There are online
softwares available. You can search for YAML checker in any search engine. Fol-
low the instructions given by the selected YAML Checker.

VECU-BUILDER V1.8 | User Guide

9 Troubleshooting | 116

9.10 Failed to parse symbols
It is possible, that symbol/debug information is missing in the binary. The error
message below treats the missing debug information during build process when
build_mode is import_compiled.

Possible reason

The error occurs due to some mishandling of DLL/SO when build_mode in YAML
file is set to import_compiled.

Possible solution

If the used build_tool is one of the Visual Studio compile versions (like
16 2016 or 17 2022), ensure that besides the DLL loaded, there must also
exist a mandatory PDB file. The source location for DLL & PDB is given by
YAML settings import_external_compiled_vecu and get_updates_
from.

If the build_tool used is MinGW Makefiles for Windows or Unix Make-
files for Ubuntu, only the DLL/SO is required. Ensure that the DLL/SO com-
pulsory contains debug information. A DIE file is created locally when
building FMUs runs. Afterwards also SymbolDetails.txt is created.

Ensure that the build_tool YAML settings match the compiler used to
build the DLL:
 l If the imported DLL was built with the GNU compiler from MinGW, ensure

that build_tool is MinGW Makefiles (build_tool: MinGW Make-
files).

 l If the imported DLL was built with a Visual Studio compiler, ensure that
build_tool is Visual Studio xx xxxx (build_tool: Visual Stu-
dio xx xxxx).

For more information see import_external_compiled_vecu in configuration
chapter.

VECU-BUILDER V1.8 | User Guide

9 Troubleshooting | 117

9.11 Could not load the vECU binary
During the vECU FMU build the SymbolDetails.txt variables are updated with
the initial values by loading of the vECU.dll/so binary and reading the values
from RAM. In cases where thevECU.dll/so cannot be loaded, the Sym-
bolDetails.txt variables receive the default value 0. You are informed with an
appropriate message in the build_fmu.log file. In this case, the FMU build is
possible, but the generated FMU execution will not work due to the same
vECU.dll/so loading problem as during the build.

Possible reason

One or more dynamic libraries, required for the vECU.dll/so execution are miss-
ing / could not be found by the OS.

Possible solution for Windows:

Check by loading the vECU.dll, which dynamic libraries are missing using the
open source SW Dependencies.

Provide the missing info about the dynamic library to the system using the
vECUConf.yaml options:

Option 1: (most recommended): Add the library to the resources folder of the
vECU.fmu using additional_resources.

Option 2: Provide the corresponding path to the missing library using envir-
onment_variables.

VECU-BUILDER V1.8 | User Guide

https://github.com/lucasg/Dependencies

9 Troubleshooting | 118

Possible solution for Ubuntu 22.04 LTS

To check the dependencies in Linux run ldd command on a *.so file.

Example: ldd libQt5Gui.so

Fig. 9-5: Check dependencies in Linux

This command will give you the list of the dependencies. If one file is missing, this
command will give a not found message.

Fig. 9-6: Not found message

One way to tell to a software where to search for its SO dependencies is to set
LD_LIBRARY_PATH to the location where these SO resides.

VECU-BUILDER V1.8 | User Guide

9 Troubleshooting | 119

9.12 Skipping plug-in

Possible reason

The FMI version set in YAML file configuration does not fit to the plug-in version.

Possible solution

Check the selected FMI version in the YAML file and ensure that it corresponds to
the correct and required plug-in version.

If FMI version is set to 2 in YAML file, then the plug-in version must be 1.

If FMI version is set to 3 in YAML file, then the plug-in version must be 2.

If there is no correspondence between FMI version and plug-in version, change it
accordingly.

9.13 Encoding cannot be defined for a VARVAL file

Possible reason

The encoding was used for VARVAL file and not for DCM file.

Possible solution

Ensure that the encoding is defined for DCM file. For more information, see ini-
tial_data in configuration chapter.

VECU-BUILDER V1.8 | User Guide

9 Troubleshooting | 120

9.14 Encoding of DCM file is not supported

Possible reason

The used encoding is not supported or there is a misspelling in the encoding.

Possible solution

Ensure that the encoding is supported and there is no misspelling in the encod-
ing. For more information, see initial_data in configuration chapter.

VECU-BUILDER V1.8 | User Guide

10 Contact information | 121

10 Contact information

Technical support

For details of your local sales office as well as your local
technical support team and product hotlines, take a look at
the ETAS website:

www.etas.com/hotlines

ETAS offers trainings for its products:

www.etas.com/academy

ETAS headquarters
ETAS GmbH

Borsigstraße 24 Phone: +49 711 3423-0

70469 Stuttgart Fax: +49 711 3423-2106

Germany Internet: www.etas.com

VECU-BUILDER V1.8 | User Guide

https://www.etas.services/hotlines
http://www.etas.services/academy
https://www.etas.services/

	1 Introduction
	1.1 Intended use
	1.2 Target group
	1.3 Data protection
	1.4 Data and information security
	1.4.1 Data and storage locations
	1.4.2 Technical and organizational measures

	2 About VECU-BUILDER
	2.1 VECU-BUILDER on
	2.2 Warning and error messages
	2.3 Basics
	2.4 Virtual ECU
	2.5 vECU creation process workflow
	2.6 Functional Mock-up Interface (FMI)

	3 Installation
	3.1 Hardware requirements
	3.2 Preparation
	3.3 Installation content
	3.4 Licensing
	3.5 Installation on Windows 10
	3.5.1 Software requirements for Windows 10
	3.5.2 Manual installation of VECU-BUILDER
	3.5.3 Silent installation of VECU-BUILDER
	3.5.4 Uninstalling VECU-BUILDER on Windows 10

	3.6 Installation on Ubuntu 22.04 LTS
	3.6.1 Software requirements for Ubuntu 22.04 LTS
	3.6.2 Installing License Manager (LiMa) on Ubuntu 22.04 LTS
	3.6.3 Opening ETAS License Manager on Ubuntu 22.04 LTS
	3.6.4 Activating the LiMa license
	3.6.5 Installing VECU-BUILDER on Ubuntu 22.04 LTS
	3.6.6 Uninstalling VECU-BUILDER on Ubuntu 22.04 LTS

	3.7 Installation on Ubuntu 22.04 LTS for WSL
	3.7.1 Software requirements for Ubuntu 22.04 LTS on WSL
	3.7.2 Installing WSL on Windows
	3.7.3 Installing Ubuntu 22.04 LTS on WSL
	3.7.4 Installing dependent software packages
	3.7.5 Installing License Manager (LiMa) on Ubuntu 22.04 LTS for WSL
	3.7.6 Installing VECU-BUILDER on Ubuntu 22.04 LTS for WSL
	3.7.6.1 Opening ETAS License Manager on Ubuntu 22.04 LTS for WSL

	3.7.7 Activating the LiMa license
	3.7.8 Uninstalling VECU-BUILDER on Ubuntu 22.04 LTS for WSL

	3.8 Installed files and folders

	4 VECU-BUILDER without admin credentials
	4.1 Use of portable version without admin credentials on Windows
	4.2 Use of portable version without admin credentials on Ubuntu 22.04 LTS

	5 Working with VECU-BUILDER
	5.1 Creating a new workspace
	5.1.1 Creating a workspace on Windows
	5.1.2 Creating a workspace on Ubuntu 22.04 LTS

	5.2 Importing files and folders
	5.3 Building the vECU
	5.4 Building the FMU
	5.5 Workspace content
	5.6 Configuration

	6 Exploring the examples/templates
	6.1 Simple example
	6.1.1 fmusim
	6.1.2 Difference between debug and release vECUs
	6.1.2.1 Keeping symbol information in a release FMU

	6.1.3 InitialData functionality
	6.1.4 eeprom functionality
	6.1.5 Usage of link_into_project
	6.1.6 ARXML-defined tasks

	6.2 BCU example (only available for Windows)
	6.2.1 Show symbol information
	6.2.2 A2L file patching
	6.2.3 A2L name mapping
	6.2.4 HEX file generation
	6.2.5 Example of additional scripts - A2L characteristics as parameters

	6.3 EventTrigger example
	6.3.1 Event-triggered tasks
	6.3.2 Task scheduling with task trigger defined as cyclic

	6.4 Template for plug-in V1 (FMI2)
	6.4.1 Plug-In feature
	6.4.2 Plug-In configuration
	6.4.3 Plug-In interface
	6.4.4 What a plug-in can do with tasks

	6.5 Template for plug-in V2 (FMI3)
	6.5.1 Plug-In feature V2
	6.5.2 Plug-In confuguration V2
	6.5.3 Plug-In interface V2
	6.5.4 What a plug-in can do with tasks V2

	7 Controlling VECU-BUILDER
	7.1 Manual interaction
	7.2 Command Line Interface (CLI)
	7.3 Ubuntu 22.04 LTS Command Line Interface

	8 Debugging vECU
	8.1 Debugging with Visual Studio 2019
	8.2 Debugging with Visual Studio Code

	9 Troubleshooting
	9.1 CMake not found
	9.2 Notepad++ does not open during workspace creation
	9.3 Some breakpoints not being hit
	9.4 (SymbolInfo.dll) the *.die file is too large to load
	9.5 Windows cannot access localhost while using sync attribute in EEPROM
	9.6 Redirecting function calls did not work as expected
	9.7 License check failed
	9.8 Building sources failed
	9.9 Indentation errors in YAML file
	9.10 Failed to parse symbols
	9.11 Could not load the vECU binary
	9.12 Skipping plug-in
	9.13 Encoding cannot be defined for a VARVAL file
	9.14 Encoding of DCM file is not supported

	10 Contact information

