
RTA-FBL STANDARD PORT
USER MANUAL
Status: RELEASED

2

Copyright

The data in this document may not be altered or amended without special notification
from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this docu-
ment. The software described in it can only be used if the customer is in possession of a
general license agreement or single license. Using and copying is only allowed in concur-
rence with the specifications stipulated in the contract.
Under no circumstances may any part of this document be copied, reproduced, transmit-
ted, stored in a retrieval system or translated into another language without the express
written permission of ETAS GmbH.
© Copyright 2022 ETAS GmbH, Stuttgart
The names and designations used in this document are trademarks or brands belonging
to the respective owners.
Document : RTA-FBL_Standard_UserManual.docx/.pdf

ETAS RTA-FBL Standard PORT – User Manual

3

Contents
1 Introduction ... 5

1.1 Revision History .. 5
1.2 Definition and Abbreviations .. 5
1.3 References .. 6
1.4 About this Document ... 6
1.5 Chapter Description ... 6

2 Introduction to ETAS RTA-FBL ... 7
2.1 What is a Flash Bootloader? ... 7
2.2 What is RTA-FBL? .. 8
2.3 The Flash Tool (Tester) ... 9
2.4 The OEM-defined Programming Sequence .. 9
2.5 Target Dependencies and the Flash Driver .. 9
2.6 Interaction with the Application using NvM ... 9
2.7 One and Two-Stage Bootloaders .. 9
2.8 Updating the bootloader ... 10
2.9 FBL generation with the RTA-FBL ISOLAR-AB plugin ... 10
2.10 General architecture of RTA-FBL.. 12
2.11 Setting up your environment to generate an RTA-FBL instance ... 12

3 RTA-FBL Standard Port .. 14
3.1 Installation ... 14
3.2 RTA-FBL Standard Architecture ... 17
3.3 Supported services ... 18
3.3.1 DIDs ... 21
3.3.2 RIDs .. 29
3.4 Reprogramming Sequence .. 31
3.5 Creating and building an RTA-FBL instance .. 32
3.5.1 Project creation .. 32
3.5.2 Configuration and Generation of FBL and BSW ... 36
3.5.3 Files created during generation ... 46
3.5.4 The RTA-FBL instance for the Dummy Target .. 47
3.5.5 FBL: Memory Layout Adaptation.. 49
3.5.6 FBL: User Functions ... 50
3.5.7 FBL: BSW adaptation .. 54
3.5.8 FBL: OS adaptation .. 55
3.5.9 FBL: BLSM adaptation .. 55
3.5.10 FBL: C-code startup and trap table updates (optional) .. 55
3.5.11 FBL: MCAL adaptation ... 55
3.5.12 Application Software: NvM layout adaptation .. 56
3.5.13 Application Software: Boot Jump Handling ... 57
3.6 Bootloader Update ... 61

4 How to Flash the ECU with INCA and the ProF Script ... 63
4.1 Seed & Key Constants .. 72
4.2 Application signature handling... 73

ETAS RTA-FBL Standard PORT – User Manual

4

5 Privacy.. 74
5.1 Privacy Statement .. 74
5.2 Data Processing ... 74
5.3 Data and Data Categories ... 74
5.4 Technical and Organizational Measures .. 74

6 ETAS Contact Addresses .. 75

ETAS RTA-FBL Standard PORT – User Manual

5

1 Introduction

This user manual introduces the RTA-FBL Standard port. It provides an overview of the RTA-
FBL architecture and software design. It also provides detailed information of the Standard
port for users developing ECUs that will be reprogrammed with RTA-FBL. This includes
information about how to configure RTA-FBL, as well as how to integrate the Application
Software on the ECU.

1.1 Revision History

Version Author Date Change (Why, What)
1.0.0 Daniele Cloralio 21/10/2021 First version.
1.1.0 Daniele Cloralio 24/02/2022 Added section 3.6

Minor changes in other
sections

1.2.0 Daniele Cloralio 16/03/2022 Updates for RTA-FBL 1.0.0

1.2 Definition and Abbreviations

Term/Abbreviation Definition
ADC Analogue to Digital Convertor
AR AUTOSAR
Application Software
(Application Software)

This is the software that executes the control logic of the
ECU

AUTOSAR AUTomotive Open System Architecture
BLSM Bootloader State Manager
BSW Basic Software
CAN Controller Area Network
CAN FD CAN Flexible Datarate
Dcm Diagnostic Communication Manager
DiD Data iDentifier
RiD Routine iDentifier
ECU Electronic Control Unit
FBL Flash Bootloader
Fee Flash EEPROM Emulation
MCAL Micro-Controller Abstraction Layer
NRC Negative Response Code from the ECU
NvM Non-Volatile Memory
OS Operative System
RTA-x The ETAS suite of embedded SW products
UDS Unified Diagnostic Services

ETAS RTA-FBL Standard PORT – User Manual

6

1.3 References

Ref. Document Name Ver.
[1] ISO 14229-1 2013

1.4 About this Document

This document provides a detailed description of ETAS’ RTA-FBL Standard Port. It provides a
reference for ECU developers that will allow reprogramming of their ECU using RTA-FBL.

1.5 Chapter Description

Chapter Description
Chapter 1 This is the document introductory chapter.
Chapter 2 This chapter introduces ECU reprogramming in general and

associated tooling, including RTA-FBL.
Chapter 3 This chapter explains how the RTA-FBL Standard Port must be

installed and used to allow you to create a complete RTA-FBL
bootloader instance. It includes important steps required for
integrating RTA-FBL with your Application Software.

Chapter 4 This chapter explains how to flash an ECU with an RTA-FBL
bootloader using INCA.

Chapter 5 This chapter contains important privacy information.
Chapter 6 This chapter contains ETAS references for customer support.

ETAS RTA-FBL Standard PORT – User Manual

7

2 Introduction to ETAS RTA-FBL

This section introduces basic FBL concepts independently of a particular OEM port or hardware
target. It also introduces ETAS’ FBL product, RTA-FBL, and provides information that is
common to all ports and targets. Specific information about your port and the targets
supported in this port are detailed in Section 3.

2.1 What is a Flash Bootloader?

A Flash Bootloader (FBL) is embedded SW that allows the reprogramming of an ECU with new
Application Software together with its calibration data using a standard communication
channel. The FBL works in combination with an external tool that runs as a desktop application
(often called a Flash Tool or Tester Tool). This tool communicates with the FBL executing on
the ECU to transfer the new Application Software. The FBL updates the ECU’s non-volatile
memory with this new Application Software.

Figure 1: High level flashing process

The FBL is a standalone program. It has a separate run-time with respect to the Application
Software, and so the FBL and the Application Software never run concurrently. After startup,
the FBL always runs first as it needs to decide whether it is to wait for new Application Software
to be sent from a tester, or if it is to start the Application Software already present in the ECU.
This decision depends on two items of state in the ECU: whether a reprogramming request
flag has been set by the Application Software before the last reset, and whether the Application
Software currently programmed in the ECU is valid.
A classic boot loading sequence showing this decision is depicted in Figure 2. Note that the
Application Software is only started if the Application Software is valid and the reprogramming
request flag is not set. In any other case, the FBL enters the Bootloader state and
communicates with the tester to reprogram the ECU.

ETAS RTA-FBL Standard PORT – User Manual

8

Figure 2: Boot loading flowchart

2.2 What is RTA-FBL?

RTA-FBL is ETAS’ bootloader product offering. It allows integrators to create Flash Bootloader
software according to a specific OEM specification. RTA-FBL generates source code (flash boot
loader modules and basic software and MCAL configuration) from user configuration. This
significantly reduces the user effort required to get the flash bootloader up and running and
integrated with the application software.
RTA-FBL leverages the following layers defined by the AUTOSAR standard architecture:
• MCAL: provided by silicon vendor
• BSW: provided by ETAS (RTA-BSW)
Basing the underlying SW architecture on AUTOSAR allows support of other communication
protocols such as CAN-FD, Ethernet, FlexRay, LIN.
RTA-FBL satisfies requirements from different OEMs for different HW architectures by creating
ports that integrate with the core RTA-FBL product. The clear separation between core (which
is OEM independent and target independent) and port (which is OEM-dependent with support
for one or more targets) makes it possible to support a wide range of OEM FBL requirements
and allows quick porting to new targets.
RTA-FBL generates source code, BSW and MCAL configuration files through the following
components:
• rtafblgen: an executable for FBL generation
• RTA-FBL GUI: a user interface for configuring the parameters used by rtafblgen for

generation. The configuration options depend on the OEM port and selected target.

ETAS RTA-FBL Standard PORT – User Manual

9

2.3 The Flash Tool (Tester)

The Flash Tool, or Tester, is a desktop application that handles the PC-side of the flashing
process. In general, the tester is used when the bootloader is in production and access to the
ECU is limited to non-debug communication protocols such as CAN, Ethernet and FlexRay.

2.4 The OEM-defined Programming Sequence

The tester communicates with the ECU by sending messages over a communication bus
according to a defined protocol. For example, some ports of ETAS’ FBL support UDS on the
CAN protocol. This means that requests are made to the ECU over a CAN bus, and the
messages sent and received comply with the UDS standard ISO 14229-1[2]. The allowed
message sequence sent to the ECU, as well as the expected response from the ECU differs
across OEMs. Therefore, the ETAS FBL supports different OEM standards for ECU
reprogramming. These are called “OEM ports” or just “ports”. This guide specifically addresses
the RTA-FBL port that implements the reprogramming standard described in [3]. Each port
supports one or more hardware “targets”.

2.5 Target Dependencies and the Flash Driver

An FBL will necessarily contain several dependencies on the underlying microcontroller target.
In addition to the typical drivers such as communication, port and timer drivers is the driver
used by the bootloader to write the FLASH memory of the ECU. This is target dependent code
(usually provided by the silicon vendor), because each different target could have different
flash memory properties (i.e. different technology, layout, endurance, etc.), The flash driver
typically forms part of the MCAL.

2.6 Interaction with the Application using NvM

A Bootloader and the Application Software may need to share data. For example, a Tester
may read or write data such as the ECU serial number both when the ECU is running in boot-
loader mode and when running its Application Software (e.g. by using UDS
ReadDataByIndentifier and WriteDataByIdentifier commands). Typically, this will mean that
both the Bootloader and the Application Software will need to be able to read and write the
same non-volatile memory. Where non-volatile memory is implemented by EEPROM emulation
in flash such sharing may introduce technical challenges because the Bootloader and
Application Software must use the same algorithms and data-structures when emulating
EEPROM. (For example, if the application uses an AUTOSAR Fee module for EEPROM emulation
then the Bootloader may need to use the same Fee module). The requirements for
compatibility between the FBL and Application Software for your port are detailed in Section
3.

2.7 One and Two-Stage Bootloaders

There are two broad models for bootloaders and the model type for the bootloader described
in [3] is described in more detail in Section 3.

• Single-stage: In this model, the complete Bootloader is stored on the ECU (in flash),
including the code used to write a new application to flash.

• Two-stage: In this model, a Primary Bootloader is stored in the ECU. This Primary
Bootloader is able to start the application running or download a Secondary Bootloader
into RAM. The Primary Bootloader is not able to write to the flash used to store the
application. Programming flash with a new application is done by the Secondary
Bootloader. There are three advantages to the two-stage approach:

1. The Primary Bootloader can in principle be smaller because it does not need
to include the code to write to flash (although space savings will be limited in
practice if the Primary Bootloader also needs to include a flash driver to write
to non-volatile memory implemented with flash).

ETAS RTA-FBL Standard PORT – User Manual

10

2. Since the Primary Bootloader does not contain the code to write to flash, the
application is less likely to corrupt itself or the bootloader because faulty code
in the application cannot jump to the flash reprogramming driver.

3. The Secondary Bootloader can be used to work around bugs in the bootloader
installed on the ECU when it was manufactured.

Rather than an independent Secondary Bootloader, some OEMs use a single-stage Bootloader
that only excludes the flash driver used to write to the flash that stores the application. Instead,
the driver used to write to flash is downloaded and stored in RAM during the programming
sequence. This is sometimes referred to as a software “interlock”.

2.8 Updating the bootloader

A bootloader specification might require that the bootloader be able to update itself. The way
that this is done may also be prescribed by that specification, or the specification may allow
the implementer to devise a proprietary solution. Bootloader update usually includes
downloading a “Bootloader Updater” in place of the application, which then updates the main
bootloader. Integrity of the ECU must be maintained so that a failure during bootloader update
does not result in bricking of the ECU. Support for bootloader update for your port (if any) is
described in Section 3.

2.9 FBL generation with the RTA-FBL ISOLAR-AB plugin

An instance of ETAS’s FBL is generated based on the chosen OEM specification that defines
the reprogramming sequence, the chosen hardware target, and the specific configurations
that are allowed within the scope of the OEM specification. The tool for generating this FBL
instance is an ISOLAR-AB plugin, which is included with your purchased core license. An FBL
generated using this plugin is described as “an instance of RTA-FBL”. The plugin creates
bootloader code as well as a full RTA-BSW project with configuration that is needed to support
the bootloader functionality. In the same generation process, the plugin therefore optionally
also invokes RTA-BSW to generate an instance of the BSW. Alternatively, the user can open
the RTA-BSW project created by the RTA-FBL plugin to inspect the generated configuration.
FBL generation also results in some ports in the generation of an MCAL project that can be
adapted. Further details relevant to your port are provided in Section 3.

ETAS RTA-FBL Standard PORT – User Manual

11

ISOLAR-AB with RTA-FBL
plugin

User creates RTA-FBL
configuration in an
ISOLAR-AB project

< generate request to >

< generates >

BSW Project

< generates >

ISOLAR-AB with RTA-BSW
plugin

< generate request to >

3rd Party MCAL generator

MCAL Code BSW Code

< generates >< generates >

3rd party and
additional

Integrator Code

Integrator’s build tooling or sample
build tooling provided with RTA-FBL

port installation (scons based)

FBL.elf

< compile and link >

FBL CodeMCAL Project

< generates >

< generate request to >

Integrator changes possible
but strictly limited to those
specified for Port

Figure 3: The process of generating an RTA-FBL instance

The tool process for generating an RTA-FBL instance is shown in Figure 3. ETAS-provided
tooling allows the integrator to create the bootloader-specific application code (through the
RTA-FBL plugin for ISOLAR-AB), and the BSW code (through the RTA-BSW plugin for ISOLAR-
AB). The MCAL code must be created using a 3rd party tool, typically provided by the silicon
vendor.
Note that the RTA-FBL ISOLAR-AB plugin generates source code that includes some sample
code that may require modification by the integrator. The integrator also has the option to
add further integration code. Finally, all source code needs to be integrated and built using
either the sample build scripts provided with RTA-FBL or the integrator’s own build toolchain.
IMPORTANT: RTA-FBL tests are carried out by ETAS for various FBL configurations that
create for each configuration different bootloader code, an MCAL project and a BSW project.
Since the integrator can make adaptations to specified sample code, the generated MCAL
project and the generated BSW project, this may result in a final software stack that is not
tested. For this reason, it is ultimately the integrator’s responsibility to test that the complete
bootloader works with any changes made to any code or projects generated by RTA-FBL.
Please read the important integrator guidelines provided in Section 3 for information relevant
to your port.

ETAS RTA-FBL Standard PORT – User Manual

12

2.10 General architecture of RTA-FBL

An instance of RTA-FBL consists of five types of module as shown within the complete RTA-
FBL architecture in Figure 4. These are:

1. Core bootloader modules (in blue); these are generated from the RTA-FBL ISOLAR-
AB plugin and must not be modified.

2. BSW modules (in orange); these are standard AUTOSAR BSW modules generated by
RTA-BSW and must not be modified.

3. Port-specific bootloader modules (in yellow): these are generated by the RTA-FBL
ISOLAR-AB plugin and must not be modified. They implement the bootloader
features that are specific to an OEM.

4. Port-specific bootloader modules (in green) generated from the RTA-FBL ISOLAR-AB
plugin that can be modified by the integrator as discussed in Section 3. For example,
the scheduler with callouts to main functions is provided in all ports as a sample OS,
and can be modified. Most ports will also include integration code that can be used
as provided in samples or completed by the integrator.

5. 3rd-party modules, and in particular the MCAL.

As noted in Section 2.9, you will need to install a number of tools in order to generate a
complete instance of RTA-FBL with all required modules as shown in Figure 4. A number of
integration steps will also be required to build your software. Details for your specific OEM
port and target are also given in Section 3, including the folder structure of a generated RTA-
FBL instance that contains the code for the modules in Figure 4.

Figure 4: General architecture of an RTA-FBL instance

2.11 Setting up your environment to generate an RTA-FBL instance

In order to generate an instance of RTA-FBL, you will need to install the tools shown in
Table 1. Once you have the above packages, you will be able to generate an instance of
RTA-FBL. In order to build the instance, you will also need to have installed the 3rd party

ETAS RTA-FBL Standard PORT – User Manual

13

MCAL as well as the relevant compiler toolchain required by your target as described in your
Standard FBL Target Guide.

Table 1: Tool versions

Tool Name Version Description

RTA-CAR 9.2 RTA-FBL configurator tool.

RTA-FBL Standard Port 1.0.0 FBL generator tool.

.NET framework 3.5 This is required by the ETAS license
management. In most cases, you will already
have this installed on your machine.

ETAS RTA-FBL Standard PORT – User Manual

14

3 RTA-FBL Standard Port

This chapter describes the Standard Port of RTA-FBL. It provides specific information relevant
to this port that expands on the general RTA-FBL features described in Chapter 2. This chapter
assumes that the reader is familiar with the ISO standard in [1] and common Flash Bootloader
functionalities described in 2.

3.1 Installation

This section describes the installer for the Standard port of RTA-FBL. As noted in Section 2.11,
you need to install this package in addition to ISOLAR-AB. This installer is described further in
this section.

In order to install RTA-FBL, follow the instructions below. At the end of this installation, the
PC needs to restart.

Step 1: Execute the file RTA_FBL_v1.0.0_Standard.exe. When the welcome window is
displayed, select the desired installation folder by typing the desired location or by clicking
“Browse”. Then click “Next”.

Figure 5: Welcome window

ETAS RTA-FBL Standard PORT – User Manual

15

Step 2: Select the ISOLAR-AB version that will support the plugin by using “Browse”. The
minimum required version is 9.2 Then click “Next”.

Figure 6: ISOLAR-AB version selection

Step 3: Wait until the installation is complete.

ETAS RTA-FBL Standard PORT – User Manual

16

Figure 7: Installation progress

ETAS RTA-FBL Standard PORT – User Manual

17

Step 4: After the installation is completed, click on “Finish” to close the installer.

Figure 8: Installed Components

3.2 RTA-FBL Standard Architecture

Figure 9 provides a high-level view of RTA-FBL architecture for Standard Port. The
communication, memory and diagnostic stacks are based on RTA-BSW and support the
AUTOSAR architecture and methodology for source code configuration and generation. The
rest of the components, except for the MCAL, are provided by ETAS. The modules that
comprise the RTA-FBL instance for this port are:

1. Core bootloader modules (in blue); these are generated from the RTA-FBL ISOLAR-
AB plugin and must not be modified by the integrator.

2. Standard AUTOSAR BSW modules (in orange); these are generated by RTA-BSW and
should not be modified by the integrator.

3. The Standard port modules (in yellow); these are generated by the RTA-FBL ISOLAR-
AB plugin and must not be modified by the integrator. The Port module implements
the bootloader features that are described in 3.3 whereas the ECL is the ETAS Crypto
library used for signature calculation.

4. The sample modules (in green); these are generated by the RTA-FBL ISOLAR-AB and
may be modified by the integrator:

o The OS is a basic cyclic scheduler that can be replaced by any other scheduler
(e.g. a fully-configured RTA-OS) as long as the calls to the relevant main
functions are made at the correct periods as in the provided samples. See
3.5.8 for further details on how to adapt this module.

o The BLSM contains code for initializing the Bootloader. Changes can be made
here by the integrator if other modules are to be integrated (e.g. other BSW
modules) but changes should not be made to the functions that interacts with

ETAS RTA-FBL Standard PORT – User Manual

18

the core FBL modules. See Section 3.5.9 for further details on how to adapt
this module.

5. The MCAL modules and the Port-Target interface module (in black); the modules
shown are those required by the Standard port of RTA-FBL. The integrator may add
additional modules required for a specific ECU. For example, the ADC module would
likely be required if the integrator wishes to check the battery voltage or other system
operating conditions required for the specific ECU. The Standard port ships with a
dummy target that contains no MCAL. Please see your target user guide for a sample
MCAL project that has been tested with the full bootloader stack.

The full list of files created during generation is described in 3.5.3

Figure 9: Architecture of an RTA-FBL Standard instance

3.3 Supported services

The following services and subservices as described in [1] are supported:

Service Subfunction Important config Comments

0x10 –
DiagnosticSessionC
ontrol

01
P2ServerMax is set to

0.05 seconds and
P2StarServerMax is set to

5 seconds.

Default Session
according to [1]

02 Programming Session
according to [1]

ETAS RTA-FBL Standard PORT – User Manual

19

0x11 – ECU Reset 01 N/A Used to reset the Fbl
according to [1]

0x22 –
ReadDataByIdentifi
er

N/A

0x0100
Used to read Fbl
Programming Counter,
for details refer to 3.3.1

0x0101
Used to read Application
Programming Counter,
for details refer to 3.3.1

0x0102

Used to read Application
Data Programming
Counter, for details refer
to 3.3.1

0xF180

Used to read Boot
Software Identification,
for details refer to 3.3.1
and [1]

0xF181

Used to read Application
Software Identification,
for details refer to 3.3.1
and [1]

0xF182

Used to read Application
Data Software
Identification, for details
refer to 3.3.1 and [1]

0xF183

Used to read Boot
Software Fingerprint, for
details refer to 3.3.1 and
[1]

0xF184

Used to read Application
Software Fingerprint, for
details refer to 3.3.1 and
[1]

0xF185

Used to read Application
Data Software
Fingerprint, for details
refer to 3.3.1 and [1]

0xF18C
Used to read ECU Serial
Number, for details refer
to 3.3.1 and [1]

0x2E -
WriteDataByIdentif
ier

N/A

0xF183 – available in
Programming Session in

Unlocked state

Used to write Boot
Software Fingerprint, for
details refer to 3.3.1 and
[1]

0xF184– available in
Programming Session in

Used to write
Application Software

ETAS RTA-FBL Standard PORT – User Manual

20

Unlocked state Fingerprint, for details
refer to 3.3.1 and [1]

0xF185 – available in
Programming Session in

Unlocked state

Used to write
Application Data
Software Fingerprint, for
details refer to 3.3.1 and
[1]

0x27 –
SecurityAccess

01

Available in Programming
Session, 10.0 seconds

delay time after 3
consecutive wrong

attempts

requestSeed for ECU
Unlock according to [1]

02

sendKey for ECU Unlock
according to [1].

Key is computed as
follow:
Key = Seed ^
FblSeedKeyConstant1 ^
FblSeedKeyConstant1

0x28 –
CommunicationCo
ntrol

00 N/A

enableRxAndTx:
Configured, but it has
no effect while in boot
mode.

03 N/A

disableRxAndTx:
Configured, but it has
no effect while in boot
mode.

0x31 –
RoutineControl

01
0xFF00 - available in

Programming Session in
Unlocked state

Erase memory region,
for details refer to 3.3.2
and [1]

01
0xF000 - available in

Programming Session in
Unlocked state

Verify memory region,
for details refer to 3.3.2
and [1]

01
0xFF01 - available in

Programming Session in
Unlocked state

Check programming
dependencies, for
details refer to 3.3.2 and
[1]

0x34 –
RequestDownload N/A Available in Programming

Session in Unlocked state

Request for download
according to [1].

Supported
dataFormatIdentifier is
00 hex.
Supported
addressAndLengthForma
tIdentifier is 44 hex.

0x36 –
TransferData N/A Available in Programming

Session in Unlocked state
Transfer of data
according to [1]

0x37 –
RequestTransferEx
it

N/A Available in Programming
Session in Unlocked state

Complete data transfer
according to [1].
transferRequestParamet

ETAS RTA-FBL Standard PORT – User Manual

21

erRecord not required.

0x3E –
TesterPresent 00 N/A Tester present according

to [1]

0x85 –
ControlDTCSetting
s

01 N/A
Set On: Configured, but
DTC is not supported
while in boot mode.

02 N/A
Set Off: Configured, but
DTC is not supported
while in boot mode.

3.3.1 DIDs

Bootloader Programming Counter – 0x0100
The Bootloader Programming Counter tracks the number of reprogramming times. An FBL
which has never been reprogrammed by a diagnostic tool will report a programming counter
of zero. The programming counter is incremented after the new downloaded software is
considered valid with a positive response to RID 0xF000 - Verify memory region.
Upon requesting data identifier 0x0100 with the diagnostic service Read Data By Identifier,
the FBL will return the Boot Software Programming Counter data record, matching following
table:

Byte Parameter Name / Description Byte Value
#1 ReadDataByIdentifier Response SID 0x62
#2 dataIdentifier High Byte 0x01
#3 dataIdentifier Low Byte 0x00
#4 Bootloader Identification Region 0x00
#5 Number of Bootloader Programming Counter High Byte

0x00-0xFF

#6 Number of Bootloader Programming Counter Low Byte

0x00-0xFF

Application Programming Counter – 0x0101
The Application Programming Counter tracks the number of application regions
reprogramming times. An FBL whose Application blocks have never been reprogrammed by a
diagnostic tool will report a programming counter of zero. The programming counter is
incremented after the new downloaded software is considered valid with a positive response
to RID 0xF000 - Verify memory region.
Upon requesting data identifier 0x0101 with the diagnostic service Read Data By Identifier,
the FBL will return the Application Software Programming Counter data record, matching
following table:

Byte Parameter Name / Description Byte Value
#1 ReadDataByIdentifier Response SID 0x62
#2 dataIdentifier High Byte 0x01

ETAS RTA-FBL Standard PORT – User Manual

22

#3 dataIdentifier Low Byte 0x01
#4 Application Identification Region – Block #1 0x00-0xFF
#5 Number of Application Programming Counter High Byte – Block

#1
0x00-0xFF

#6 Number of Application Programming Counter Low Byte – Block
#1

0x00-0xFF

..
n·3+1 Application Identification Region – Block #n(*) 0x00-0xFF
n·3+2 Number of Application Programming Counter High Byte – Block

#n(*)
0x00-0xFF

n·3+3 Number of Application Programming Counter Low Byte – Block
#n(*)

0x00-0xFF

(*) n: Number of configured application regions

Application Data Programming Counter – 0x0102
The Application Data Programming Counter tracks the number of calibration regions
reprogramming times. An FBL whose Calibration blocks have never been reprogrammed by a
diagnostic tool will report a programming counter of zero. The programming counter is
incremented after the new downloaded software is considered valid with a positive response
to RID 0xF000 - Verify memory region.
Upon requesting data identifier 0x0102 with the diagnostic service Read Data By Identifier,
the FBL will return the Application Data Programming Counter data record, matching following
table:

Byte Parameter Name / Description Byte Value
#1 ReadDataByIdentifier Response SID 0x62
#2 dataIdentifier High Byte 0x01
#3 dataIdentifier Low Byte 0x02
#4 Application Data Identification Region – Block #1 0x00-0xFF
#5 Number of Application Data Programming Counter High Byte –

Block #1
0x00-0xFF

#6 Number of Application Data Programming Counter Low Byte –
Block #1

0x00-0xFF

..
n·3+1 Application Data Identification Region – Block #n(*) 0x00-0xFF
n·3+2 Number of Application Data Programming Counter High Byte –

Block #n(*)
0x00-0xFF

n·3+3 Number of Application Data Programming Counter Low Byte –
Block #n(*)

0x00-0xFF

(*) n: Number of configured calibration regions

Application Programming Status – 0x0103
The Application Programming Status reports the reprogramming status of each application
region.
Upon requesting data identifier 0x0103 with the diagnostic service Read Data By Identifier,
the FBL will return the Application Programming Status data record, matching following table:

ETAS RTA-FBL Standard PORT – User Manual

23

Byte Parameter Name / Description Byte Value
#1 ReadDataByIdentifier Response SID 0x62
#2 dataIdentifier High Byte 0x01
#3 dataIdentifier Low Byte 0x03
#4 Application Identification Region – Block #1 0x00-0xFF
#5 Application Programming Status – Block #1 0x00 – Block in erased state

or partially reprogrammed
0x10 – Signature verification
failed by RID 0xF000
0x11 – Signature verification
success by RID 0xF000
0x20 – CRC verification failed
by RID 0xF000
0x21 – CRC verification
success by RID 0xF000
0xF0 – Check dependencies
failed because software
deemed incompatible by the
user
0xFF – Check dependencies
success by RID 0xFF01

..
n·2+2 Application Identification Region – Block #n(*) 0x00-0xFF
n·2+3 Application Programming Status – Block #n(*) 0x00 – Block in erased state

or partially reprogrammed
0x10 – Signature verification
failed by RID 0xF000
0x11 – Signature verification
success by RID 0xF000
0x20 – CRC verification failed
by RID 0xF000
0x21 – CRC verification
success by RID 0xF000
0xF0 – Check dependencies
failed because software
deemed incompatible by the
user
0xFF – Check dependencies
success by RID 0xFF01

 (*) n: Number of configured application regions

Application Data Programming Status – 0x0104
The Application Data Programming Status reports the reprogramming status of each
calibration region.
Upon requesting data identifier 0x0104 with the diagnostic service Read Data By Identifier,
the FBL will return the Application Data Programming Status data record, matching following
table:

ETAS RTA-FBL Standard PORT – User Manual

24

Byte Parameter Name / Description Byte Value
#1 ReadDataByIdentifier Response SID 0x62
#2 dataIdentifier High Byte 0x01
#3 dataIdentifier Low Byte 0x04
#4 Application Data Identification Region – Block #1 0x00-0xFF
#5 Application Data Programming Status – Block #1 0x00 – Block in erased state

or partially reprogrammed
0x10 - Signature verification
failed by RID 0xF000
0x11 - Signature verification
success by RID 0xF000
0x20 – CRC verification failed
by RID 0xF000
0x21 – CRC verification
success by RID 0xF000
0xF0 – Check dependencies
failed because software
deemed incompatible by the
user
0xFF – Check dependencies
success by RID 0xFF01

..
n·2+2 Application Data Identification Region – Block

#n(*)
0x00-0xFF

n·2+3 Application Data Programming Status – Block
#n(*)

0x00 – Block in erased state
or partially reprogrammed
0x10 - Signature verification
failed by RID 0xF000
0x11 - Signature verification
success by RID 0xF000
0x20 – CRC verification failed
by RID 0xF000
0x21 – CRC verification
success by RID 0xF000
0xF0 – Check dependencies
failed because software
deemed incompatible by the
user
0xFF – Check dependencies
success by RID 0xFF01

(*) n: Number of configured calibration regions

Bootloader Software Identification – 0xF180
DID 0xF180 is used to reference the vehicle manufacturer specific ECU Bootloader Software
Identification record, according to [1].

ETAS RTA-FBL Standard PORT – User Manual

25

Upon requesting data identifier 0xF180 with the diagnostic service Read Data By Identifier,
the FBL will return the Bootloader Software Identification data record, matching following
table:

Byte Parameter Name / Description Byte Value
#1 ReadDataByIdentifier Response SID 0x62
#2 dataIdentifier High Byte 0xF1
#3 dataIdentifier Low Byte 0x80
#4 Bootloader Software Identification – Number of Bootloader

regions
0x01

#5 Bootloader Software Identification – Byte #1 0x00-0xFF
#6 Bootloader Software Identification – Byte #2 0x00-0xFF
#7 Bootloader Software Identification – Byte #3 0x00-0xFF

Application Software Identification – 0xF181
DID 0xF181 is used to reference the vehicle manufacturer specific ECU Application Software
Number(s), according to [1].
Upon requesting data identifier 0xF181 with the diagnostic service Read Data By Identifier,
the FBL will return the Application Software Identification data record, matching following
table:

Byte Parameter Name / Description Byte Value
#1 ReadDataByIdentifier Response SID 0x62
#2 dataIdentifier High Byte 0xF1
#3 dataIdentifier Low Byte 0x81
#4 Application Software Identification – Number of Application

regions(*)
0x00-0xFF

#5 Application Software Identification – Byte #1 0x00-0xFF
#6 Application Software Identification – Byte #2 0x00-0xFF
#7 Application Software Identification – Byte #3 0x00-0xFF
#8 Application Software Identification – Byte #4 0x00-0xFF
#9 Application Software Identification – Byte #5 0x00-0xFF

(*) Number of application regions configured within FblRegions

Application Data Software Identification - 0xF182
DID 0xF182 is used to reference the vehicle manufacturer specific ECU Application Data
Identification record, according to [1].
Upon requesting data identifier 0xF182 with the diagnostic service Read Data By Identifier,
the FBL will return the Application Data Software Identification data record, matching following
table:

Byte Parameter Name / Description Byte Value
#1 ReadDataByIdentifier Response SID 0x62

ETAS RTA-FBL Standard PORT – User Manual

26

#2 dataIdentifier High Byte 0xF1
#3 dataIdentifier Low Byte 0x82
#4 Application Data Software Identification – Number of Calibration

regions(*)
0x00-0xFF

#5 Application Data Software Identification – Byte #1 0x00-0xFF
#6 Application Data Software Identification – Byte #2 0x00-0xFF
#7 Application Data Software Identification – Byte #3 0x00-0xFF
#8 Application Data Software Identification – Byte #4 0x00-0xFF
#9 Application Data Software Identification – Byte #5 0x00-0xFF

(*) Number of calibration regions configured within FblRegions

Bootloader Software Fingerprint – 0xF183
DID 0xF183 is used to reference the vehicle manufacturer specific ECU Bootloader Software
Fingerprint identification record, according to [1]. It can be used to store relevant information
(e.g. tester identification or reprogramming date) during the bootloader reprogramming
process.
Upon requesting data identifier 0xF183 with the diagnostic service Read Data By Identifier,
the FBL will return the Bootloader Software Fingerprint data record, matching following table:

Byte Parameter Name / Description Byte Value
#1 ReadDataByIdentifier Response SID 0x62
#2 dataIdentifier High Byte 0xF1
#3 dataIdentifier Low Byte 0x83
#4 Bootloader Identification Region 0x00
#5 Bootloader Software Fingerprint – Byte #1 0x00-0xFF
#6 Bootloader Software Fingerprint – Byte #2 0x00-0xFF
#7 Bootloader Software Fingerprint – Byte #3 0x00-0xFF
#8 Bootloader Software Fingerprint – Byte #4 0x00-0xFF
#9 Bootloader Software Fingerprint – Byte #5 0x00-0xFF

The Bootloader Software Fingerprint data record can be written into FBL’s NvM, upon
requesting data identifier 0xF183 with the diagnostic service Write Data By Identifier, matching
following table:

Byte Parameter Name / Description Byte Value
#1 WriteDataByIdentifier Request SID 0x2E
#2 dataIdentifier High Byte 0xF1
#3 dataIdentifier Low Byte 0x83
#4 Bootloader Identification Region 0x00
#5 Bootloader Software Fingerprint – Byte #1 0x00-0xFF
#6 Bootloader Software Fingerprint – Byte #2 0x00-0xFF
#7 Bootloader Software Fingerprint – Byte #3 0x00-0xFF
#8 Bootloader Software Fingerprint – Byte #4 0x00-0xFF
#9 Bootloader Software Fingerprint – Byte #5 0x00-0xFF

ETAS RTA-FBL Standard PORT – User Manual

27

Application Software Fingerprint – 0xF184
DID 0xF184 is used to reference the vehicle manufacturer specific ECU Application Software
Fingerprint identification record, according to [1]. It can be used to store relevant information
(e.g. tester identification or reprogramming date) during the application reprogramming
process.
Upon requesting data identifier 0xF184 with the diagnostic service Read Data By Identifier,
the FBL will return the Application Software Fingerprint data record, matching following table:

Byte Parameter Name /
Description

Byte
Value

#1 ReadDataByIdentifier
Response SID

0x62

#2 dataIdentifier High
Byte

0xF1

#3 dataIdentifier Low
Byte

0x84

#4 Application Software
Identification Region
– Block #1

0x00-
0xFF

#5 Application
Fingerprint (Byte #1)
– Block #1

0x00-
0xFF

#6 Application
Fingerprint (Byte #1)
– Block #2

0x00-
0xFF

#7 Application
Fingerprint (Byte #1)
– Block #3

0x00-
0xFF

#8 Application
Fingerprint (Byte #1)
– Block #4

0x00-
0xFF

#9 Application
Fingerprint (Byte #1)
– Block #5

0x00-
0xFF

..
(n-
1)·6+4

Application
Identification Region
– Block #n(*)

0x00-
0xFF

(n-
1)·6+5

Application
Fingerprint (Byte #1)
– Block #n(*)

0x00-
0xFF

(n-
1)·6+6

Application
Fingerprint (Byte #2)
– Block #n(*)

0x00-
0xFF

(n-
1)·6+7

Application
Fingerprint (Byte #3)
– Block #n(*)

0x00-
0xFF

(n-
1)·6+8

Application
Fingerprint (Byte #4)

0x00-
0xFF

ETAS RTA-FBL Standard PORT – User Manual

28

– Block #n(*)
(n-
1)·6+9

Application
Fingerprint (Byte #5)
– Block #n(*)

0x00-
0xFF

(*) n: Number of application regions configured within FblRegions

The Application Software Fingerprint data record can be written into FBL’s NvM, upon
requesting data identifier 0xF184 with the diagnostic service Write Data By Identifier, matching
following table:

Byte Parameter Name / Description Byte Value
#1 WriteDataByIdentifier Request SID 0x2E
#2 dataIdentifier High Byte 0xF1
#3 dataIdentifier Low Byte 0x84
#4 Application Identification Region 0x00-0xFF
#5 Application Fingerprint – Byte #1 0x00-0xFF
#6 Application Fingerprint – Byte #2 0x00-0xFF
#7 Application Fingerprint – Byte #3 0x00-0xFF
#8 Application Fingerprint – Byte #4 0x00-0xFF
#9 Application Fingerprint – Byte #5 0x00-0xFF

Application Data Software Fingerprint – 0xF185
DID 0xF185 is used to reference the vehicle manufacturer specific ECU Application Data
Software Fingerprint identification record, according to [1]. It can be used to store relevant
information (e.g. tester identification or reprogramming date) during the calibration
reprogramming process.
Upon requesting data identifier 0xF185 with the diagnostic service Read Data By Identifier,
the FBL will return the Application Software Fingerprint data record, matching following table:

Byte Parameter Name / Description Byte Value
#1 ReadDataByIdentifier Response SID 0x62
#2 dataIdentifier High Byte 0xF1
#3 dataIdentifier Low Byte 0x85
#4 Application Data Software Identification Region – Block #1 0x00-0xFF
#5 Data Fingerprint (Byte #1) – Block #1 0x00-0xFF
#6 Data Fingerprint (Byte #1) – Block #2 0x00-0xFF
#7 Data Fingerprint (Byte #1) – Block #3 0x00-0xFF
#8 Data Fingerprint (Byte #1) – Block #4 0x00-0xFF
#9 Data Fingerprint (Byte #1) – Block #5 0x00-0xFF
..
(n-1)·6+4 Application Data Software Identification Region – Block #n(*) 0x00-0xFF
(n-1)·6+5 Data Fingerprint (Byte #1) – Block #n(*) 0x00-0xFF
(n-1)·6+6 Data Fingerprint (Byte #2) – Block #n(*) 0x00-0xFF

ETAS RTA-FBL Standard PORT – User Manual

29

(n-1)·6+7 Data Fingerprint (Byte #3) – Block #n(*) 0x00-0xFF
(n-1)·6+8 Data Fingerprint (Byte #4) – Block #n(*) 0x00-0xFF
(n-1)·6+9 Data Fingerprint (Byte #5) – Block #n(*) 0x00-0xFF

(*) n: Number of calibration regions configured within FblRegions

The Application Data Software Fingerprint data record can be written into FBL’s NvM, upon
requesting data identifier 0xF185 with the diagnostic service Write Data By Identifier, matching
following table:

Byte Parameter Name / Description Byte Value
#1 WriteDataByIdentifier Request SID 0x2E
#2 dataIdentifier High Byte 0xF1
#3 dataIdentifier Low Byte 0x85
#4 Application Data Identification Region 0x00-0xFF
#5 Data Fingerprint – Byte #1 0x00-0xFF
#6 Data Fingerprint – Byte #2 0x00-0xFF
#7 Data Fingerprint – Byte #3 0x00-0xFF
#8 Data Fingerprint – Byte #4 0x00-0xFF
#9 Data Fingerprint – Byte #5 0x00-0xFF

ECU Serial Number – 0xF18C
The DID 0xF18C is used to reference the ECU (server) serial number, according to [1].
Upon requesting data identifier 0xF18C with the diagnostic service Read Data By Identifier,
the FBL will return the ECU Serial Number data record, matching following table:

Byte Parameter Name / Description Byte Value
#1 ReadDataByIdentifier Response SID 0x62
#2 dataIdentifier High Byte 0xF1
#3 dataIdentifier Low Byte 0x8C
#4 ECU Serial Number – Byte #1 0x00-0xFF
#5 ECU Serial Number – Byte #2 0x00-0xFF
#6 ECU Serial Number – Byte #3 0x00-0xFF

3.3.2 RIDs

Erase Memory – 0xFF00
RID 0xFF00 shall be used to start the FBL memory erase routine. The Control option is used
to identify the block that should be erased and reprogrammed.
The Erase Memory Routine can be triggered upon requesting routine identifier 0xFF00 with
the diagnostic service Routine Control, matching following table:

ETAS RTA-FBL Standard PORT – User Manual

30

Byte Parameter Name / Description Byte Value
#1 RoutineControl Request SID 0x31
#2 sub-function 0x01
#3 routineIdentifier High Byte 0xFF
#4 routineIdentifier Low Byte 0x00
#5 Identification Region 0x00-0xFF

Verify Download – 0xF000
RID 0xF000 shall be used to start the FBL verification process routine for the last downloaded
block. The Control option depends on the configuration parameter
FblSoftwareVerificationType, described in 3.5.2

• If FblSoftwareVerificationType = SIGNATURE:

The Verify Download Routine can be triggered upon requesting routine identifier
0xF000 with the diagnostic service Routine Control, matching following table:

Byte Parameter Name / Description Byte Value
#1 RoutineControl Request SID 0x31
#2 sub-function 0x01
#3 routineIdentifier High Byte 0xF0
#4 routineIdentifier Low Byte 0x00

The FBL will compute the software signature, using algorithm RSASSA-PKCS1-v1_5
with 2048 bit public key specified via the configuration parameter
FblSecurityPublicKey.
The FBL will then compare the computed signature with one contained in the last
256 bytes of the software and return NRC 0x72 – General Programming Failure if
the two do not match.

• If FblSoftwareVerificationType = CRC:

The Verify Download Routine can be triggered upon requesting routine identifier
0xF000 with the diagnostic service Routine Control, matching following table:

Byte Parameter Name / Description Byte Value
#1 RoutineControl Request SID 0x31
#2 sub-function 0x01
#3 routineIdentifier High Byte 0xF0
#4 routineIdentifier Low Byte 0x00
#5 CRC Value – Byte #1 0x00-0xFF
#6 CRC Value – Byte #2 0x00-0xFF
#7 CRC Value – Byte #3 0x00-0xFF
#8 CRC Value – Byte #4 0x00-0xFF

The FBL will compute the software CRC, using CRC32H04C11DB7 polynomial and
0xFFFFFFFF as initial value.

ETAS RTA-FBL Standard PORT – User Manual

31

The FBL will then compare the computed CRC with one received in the Control Option
and return NRC 0x72 – General Programming Failure if the two do not match.

Check Programming Dependencies – 0xFF01
RID 0xFF01 shall be used to start the FBL Programming Dependencies process, according to
[1].

The Programming Dependencies Routine can be triggered upon requesting routine identifier
0xF000 with the diagnostic service Routine Control, matching following table:

Byte Parameter Name / Description Byte Value
#1 RoutineControl Request SID 0x31
#2 sub-function 0x01
#3 routineIdentifier High Byte 0xFF
#4 routineIdentifier Low Byte 0x01

The FBL will verify that all mandatory regions have been programmed successfully, and
trigger an additional user callout for further compatibility check.
If previous verification fails, the FBL will return NRC 0x72 – General Programming Failure.

3.4 Reprogramming Sequence

Reprogramming Sequence is based on Section 15 from [1], and described in Figure 10.
Orange step is optional, and can be executed any time while in boot mode if necessary.
For each service details, please refer to 3.3 and [1]

ETAS RTA-FBL Standard PORT – User Manual

32

Figure 10: RTA-FBL Standard reprogramming sequence

3.5 Creating and building an RTA-FBL instance

This section explains how to create an ISOLAR-AB project to configure and generate an
instance of Standard RTA-FBL port.
The tooling described in this section has been tested with Windows 10.

3.5.1 Project creation

A new FBL project is created in ISOLAR-AB. As shown in Figure 11, create a new RTA-CAR
project by clicking the “New” dropdown button and selecting “RTA-CAR Project”.

ETAS RTA-FBL Standard PORT – User Manual

33

Figure 11: RTA-CAR project creation

If RTA-CAR Project is not present, select “Project…” and search for “RTA-CAR Project” in the
new window, as shown in Figure 12.

ETAS RTA-FBL Standard PORT – User Manual

34

Figure 12: RTA-CAR project

In the New RTA-CAR Project window, select RTA-CAR bootloader project as shown in Figure
13.

Figure 13: New RTA-CAR Bootloader Project

ETAS RTA-FBL Standard PORT – User Manual

35

Next, choose a name for your project and select the RTA-FBL target from the dropdown list
as shown in Figure 14. Note that a target for RTA-OS port must also be selected for a proper
project creation, despite the tool can be unused.
If you have multiple RTA-FBL tools installed, click on Advanced option and select 1.0.0
.Standard plugin under RTA FBL Tools.

Figure 14: Select Target

Once complete, clicking the Finish button will result in the creation of the RTA-CAR bootloader
project.

Figure 15 shows the result of a successful project creation in the console window.

ETAS RTA-FBL Standard PORT – User Manual

36

Figure 15: Console window upon successful project creation

3.5.2 Configuration and Generation of FBL and BSW

Next, complete the FBL configuration parameters. In the ECU Navigator view, right click on
FBL under Bsw Modules and select Open With > BSW Editor, as shown in Figure 16.

Figure 16: Accessing the FBL configuration parameters

The user can now edit the base configuration parameters in the RTA-FBL Editor window. Figure
17 shows as an example the port-specific configuration parameters. An explanation of each
parameter is provided at the end of this section.

ETAS RTA-FBL Standard PORT – User Manual

37

Figure 17: Edit Configuration Parameters

Once complete, the user can generate the RTA-FBL instance first by clicking on “Open RTA
Code Generator dialog…” as shown in Figure 18 and then, in the opened RTA Code Generator
window, by clicking Run after selecting only RTA-FBL – 1.0.0.Standard as shown in Figure 19.
RTA-OS should be generated only if the user wants to replace the FlashBootloader scheduler
with a version of RTA-OS that is has configured for his target.

Figure 18: Open RTA Code Generator Dialog

ETAS RTA-FBL Standard PORT – User Manual

38

Figure 19: RTA Code Generator

Note the two options that are available:

• Generate BSW: This will automatically generate the BSW after FBL generation using
the BSW configuration generated by the FBL generator.

• Overwrite BSW default values: If this option is selected, any manual changes you
have made to the BSW configuration after the last FBL generation will be lost and
overwritten by default values. Note that this option should only be selected once you
have generated the BSW at least once (using the option “Generate BSW” as described
above).

o IMPORTANT: The FBL generator will always overwrite all BSW configuration
held in the configuration file Fblgen_EcucValues.arxml, even if the “Overwrite
BSW default values” option is not selected. The configuration in this file
cannot be modified as these values are completely defined by the
configuration of the bootloader.

On clicking Run, the RTA-FBL instance is generated. Figure 20 shows the result of a successful
generation in the console window.

ETAS RTA-FBL Standard PORT – User Manual

39

Figure 20: Console Window on Successful Generation

To complete the FBL instance, the user must generate the BSW code by selecting the BSW
modules for which the code should be generated in the RTA-BSW CodeGen tab of the RTA
Code Generator window.
If you have previously generated the RTA-FBL instance, the configured modules are already
selected, as shown in Figure 21.

Figure 21: RTA-BSW CodeGen tab

Once complete, check the box Generate BSW in the Fbl Main tab of the RTA Code Generator
window and click Run.
The user can re-generate the BSW code by clicking on Generate RTA-FBL as shown in Figure
22. Upon successful generation, the popup message in Figure 23 is shown.

ETAS RTA-FBL Standard PORT – User Manual

40

Figure 22: Generate RTA-FBL

Figure 23: Successful generation

Following sections describe the parameters that the user can configure. The letters ‘M’ and ’O’
are used to indicate “Mandatory” and “Optional” respectively. The column “Requires BSW
regen.” indicates whether the BSW needs to be re-generated in case the associated parameter
has been changed.

Note that your target may also specify parameters that are unique to that target. These will
also be listed in your Standard FBL Target Guide.

FblRegions
This container allows the configuration of the memory regions of your ECU. For each region
the parameters details are listed in Table 2.
The allowed range for each FblRegion that can be specified is different for each target and
can be found in your Standard FBL Target Guide.

Table 2: Configuration parameters FblRegions of RTA-FBL Standard

Parameter Description Requires
BSW Re-

Gen

Optional
or

Mandatory
FblRegionAddressLow Specifies the low address of the region.

Enter a Program Flash address valid for your
target. See your RTA-FBL Standard Target
Guide for details of the allowed range.

Yes M

ETAS RTA-FBL Standard PORT – User Manual

41

FblRegionAddressHigh Specifies the high address of the region.
Enter a Program Flash address valid for your
target. See your RTA-FBL Standard Target
Guide for details of the allowed range.

Yes M

FblRegionType Specifies the region type from below list:
• INTERNAL_BOOTLOADER_REGION,
• INTERNAL_APPLICATION_REGION,
• EXTERNAL_APPLICATION_REGION,
• INTERNAL_CALIBRATION_REGION,
• EXTERNAL_CALIBRATION_REGION

Internal regions erasing and writing are
handled by the FBL, while for external
regions user callouts are provided.

Yes M

FblRegionId Specifies a unique number to identify each
region in UDS services.
Note that number “0” is reserved for the FBL
itself, and the FblRegionId of all regions must
be contiguous.

Yes M

FblRegionOptional Specifies if the region must be downloaded or
it is optional.
If set to TRUE, the region is marked as
optional and even if it is not downloaded,
Check Programming Dependencies RID will
return success.
For an INTERNAL_BOOTLOADER_REGION
this parameter is not relevant and it would be
ignored.

Yes M

FblCan
The Can parameters details of FblCan container are listed in Table 3.
For additional information on the MCAL Can configuration, please refer to your Standard FBL
Target Guide.

Table 3: Configuration parameters FblCan of RTA-FBL Standard

Parameter Description Requires
BSW Re-

Gen

Optional
or

Mandatory
FblCanType Specifies the CAN communication type from

below list:
• EXTENDED,
• EXTENDED_FD,
• STANDARD,
• STANDARD_FD

EXTENDED refers to 29 bits Can id
configuration, while STANDARD refers to 11
bits Can id configuration.
CAN-FD can be enabled selecting
EXTENDED_FD or STANDARD_FD.

Yes M

ETAS RTA-FBL Standard PORT – User Manual

42

FblCanIdRxPhy Allows to configure the CAN Id of UDS Physical
Request.
Depending on FblCanType configuration, you
should enter a 29-bit CAN id or 11-bit CAN id.

Yes M

FblCanIdRxFunc Allows to configure the CAN Id of UDS
Functional Request.
Depending on FblCanType configuration, you
should enter a 29-bit CAN id or 11-bit CAN id.

Yes M

FblCanIdTxPhy Allows to configure the CAN Id of UDS
Response.
Depending on FblCanType configuration, you
should enter a 29-bit CAN id or 11-bit CAN id.

Yes M

FblCore
The parameters details of FblCore container are listed in Table 4.
This parameters set is common to all RTA-FBL ports.

Table 4: Configuration parameters FblCore of RTA-FBL Standard

Parameter Description Requires
BSW Re-

Gen

Optional
or

Mandatory
EraseTimeout Max time in milliseconds for erase Program

Flash before timing out.
You should enter an integer value between 1
and 100000.

No M

WriteTimeout Max time in milliseconds for writing Program
Flash before timing out.
You should enter an integer value between 1
and 100000.

No M

VerifyTimeout Max time in milliseconds for verifying Program
Flash before timing out.
You should enter an integer value between 1
and 100000.

No M

StartAddress Memory address of the first instruction of
application software.

No M

FblIdentification
The Identification parameters details of the FblIdentification container are listed in Table 5.
For additional DIDs details please refer to 3.3.1

Table 5: Configuration parameters FblIdentification of RTA-FBL Standard

Parameter Description Requir
es

BSW
Re-
Gen

Optional
or

Mandato
ry

FblEcuSerialNumberSupport Specifies if the user callback function No O

ETAS RTA-FBL Standard PORT – User Manual

43

Fbl_Port_GetEcuSerialNumberUserHook()
is to be called to read the Ecu Serial
Number for DID 0xF18C, or if the Ecu
Serial Number is to be read from NvM. If
set to
ECUSERIALNUMBER_USER_SUPPORT,
then the callback function is called. If set to
ECUID_NVM_SUPPORT, then the Ecu
Serial Number is read from NvM. If not
specified, then the default behavior is to
use NvM (i.e. the behavior is as if
ECUSERIALNUMBER_NVM_SUPPORT is
configured).

BootSoftwareIdentification Specifies default ROM value for DID $F180,
stored in NvM block
NvM_DIDF180_BootSoftwareIdentification.
Note that the number of bootloader region
is added as first byte.
It should be in range 0x00 - 0xFFFFFF

No M

ApplicationSoftwareIdentificati
on

Specifies default ROM value for DID $F181,
stored in NvM block
NvM_DIDF181_ApplicationSoftwareIdentific
ation. Note that the number of application
regions is added as first byte.
It should be in range 0x00 - 0xFFFFFFFFFF

No M

ApplicationDataSoftwareIdenti
fication

Specifies default ROM value for DID $F182,
stored in NvM block
NvM_DIDF182_ApplicationDataSoftwareIde
ntification. Note that the number of
application regions is added as first byte.
It should be in range 0x00 - 0xFFFFFFFFFF

No M

EcuSerialNumber Specifies default ROM value for DID $F18C,
stored in NvM block
NvM_DIDF18C_EcuSerialNumber.
It should be in range 0x00 - 0xFFFFFF.

No O

FblSec
The security related parameters details that can be configured within FblSec container are
listed in Table 6.

Table 6: Configuration parameters FblSec of RTA-FBL Standard

Parameter Description Require
s BSW
Re-Gen

Optional
or

Mandator
y

FblSoftwareVerificationTyp
e

Specifies how the newly reprogrammed
software should be verified. It could be:

• CRC,
• SIGNATURE.

The CRC verification is based on
CRC32H04C11DB7 polynomial and

Yes M

ETAS RTA-FBL Standard PORT – User Manual

44

0xFFFFFFFF as initial value.
The SIGNATURE verification is based on
RSASSA-PKCS1-v1_5 with 2048 bit key.
This parameter affects RID 0xF000, see
sections 3.3.2 for details
Note that if “SIGNATURE” is selected, INCA
Prof is generated to create the application
signature, see section 4.1 for details

FblSecurityPublicKey Specifies the public key used by the FBL
when FblSoftwareVerificationType is
SIGNATURE.
It could contain the 256-byte hex value of
the key or the absolute path of a text file
with the key.
Sample keys with the different allowed input
formats are provided for you under
C:\ETAS\RTA-
FBL_1.0.0_Standard\Ports\Standard\Sampl
es

No O

FblSeedKeyConstant1 Specify a first security constant to customize
the Seed&Key algorithm to unlock level
0x01.
It should be in range 0x00 - 0xFFFFFFFF. It
is recommended to use a 4 bytes value for
more unpredictability.

No M

FblSeedKeyConstant2 Specify a second security constant to
customize the Seed&Key algorithm to
unlock level 0x01.
It should be in range 0x00 - 0xFFFFFFFF. It
is recommended to use a 4 bytes value for
more unpredictability.

No M

FblGeneral
The general parameters details that can be configured within FblGeneral container are listed
in Table 7.

Table 7: Configuration parameters FblGeneral of RTA-FBL Standard

Parameter Description Requires
BSW Re-

Gen

Optional
or

Mandatory
FblBlockSize The download block size in bytes, used for

Transfer Data service. Select one of he
allowed values, depending on your target
memory alignment.
If no value is entered, then a target specific
default value is used.

No O

FblSleepTimer Specifies if the bootloader should enter in
sleep mode after a defined amount of time in
Default Session without an active diagnostic
communication.

No O

ETAS RTA-FBL Standard PORT – User Manual

45

This is to prevent KL +30 ECU without a valid
application to be always awake, since the
bootloader doesn’t manage Network
Management.
Select one of the allowed values:

• DISABLED,
• 20,
• 60,
• 300.

If FblSleepTimer equals “DISABLED”, user
callout Fbl_Port_GoToSleep is never triggered.
The other values specify the number of
seconds after which the callout
Fbl_Port_GoToSleep should be triggered.

ETAS RTA-FBL Standard PORT – User Manual

46

3.5.3 Files created during generation

When you generate an instance of the Standard RTA-FBL using the RTA-FBL plugin for
ISOLAR-AB, a series of files is created within a number of folders that you then use to build
your RTA-FBL instance. Table 8 summarizes the folder structure created for this port.
Additional folders which contain the target-specific elements, such as target code and sample
build scripts, will be created. See your RTA-FBL Standard Target Guide for details of the
content of these additional folders.
Please note that the executable generated using our sample build scripts includes debug
symbols, to make debugging/troubleshooting easier. However, we recommend
disabling/stripping debug symbols from your final production builds, as debug symbols may
constitute a security risk in some use-cases.

Table 8: Files created by RTA-FBL generation

L1 Folder Description
./ The home of the RTA-CAR project
./fbl/input Internal files for RTA-CAR created during project creation,

with FBL module configuration. Do not manually edit these
files.

./fbl/output/Fbl/Bootloader This contains the core (port-independent and target-
independent) modules.

./fbl/output/Fbl/BSW This folder contains the RTA-BSW project used to generate
the FBL BSW modules. You can investigate the configuration
used for the BSW modules of the FBL. If the configuration
in the project is manually changed and a new BSW
generated, then it is the integrator’s responsibility to test
that these changes do not affect the bootloader’s correct
functionality.

./fbl/output/Fbl/INFRA/ECL This is the ETAS crypto library (ECL). It should not be
modified by the integrator.

./fbl/output/Fbl/INFRA/BLSM The BLSM contains code for initializing the Bootloader. The
functions in /src/BLSM_CallOuts.c can be changed as
described in Section 3.5.9, but the functions in BLSM_Main.c
should not be changed.
It is the integrator’s responsibility to test that any change
made to the BLSM does not affect the bootloader’s correct
functionality.

./fbl/output/Fbl/INFRA/OS The OS contains the cyclic scheduler that calls the module
main functions. The OS is provided as a fully functioning and
tested sample, but the integrator may replace the OS as
described in Section 3.5.8. For example, the integrator may
wish to use RTA-OS in order to more easily configure
interrupts for other software integrated within the RTA-FBL.
It is the integrator’s responsibility to test that any change
made to the OS does not affect the bootloader’s correct
functionality.

./fbl/output/Fbl/INFRA/Port This folder contains the code that implements port-specific
functionality.
The file FBL_Port.c should not be modified by the integrator.

ETAS RTA-FBL Standard PORT – User Manual

47

The other files may be modified depending on your ECU’s
use cases.
It is the integrator’s responsibility to test that any change
made to the Port folder does not affect the bootloader’s
correct functionality.

./fbl/output/Fbl/INFRA/Stubs This folder contains stub code necessary due to the
AUTOSAR architecture. Files in this folder should not be
modified by the integrator.

3.5.4 The RTA-FBL instance for the Dummy Target

The dummy target provided with the Standard Port cannot be built. You can only use the
generated code as a reference to explore how different parameters change the generated FBL
instance. Your Standard FBL Target Guide will provide information on how to build an instance
of the bootloader for your real target.

The FBL for your target will have undergone an in-depth testing using the compiler and MCAL
that you have chosen. The Standard FBL Target Guide for your target will indicate the tools
and their versions that you must have to create a buildable FBL instance. All targets use a
common base that require the tools as described in Table 1.

Note that although different compilers supported by your MCAL, as well as other MCAL
versions for this target, should work, these have not been tested. If you do need to generate
your bootloader for a different MCAL/compiler combination than that listed above, it is
recommended that you first contact ETAS support team.

Dummy Target Memory Layout
In order to allow the user to experiment with different memory space configurations, the
dummy target is set up to mimic the memory layout of Infineon’s TC275 processor. This
processor has a memory layout as shown in Table 9. Memory regions of a space must begin
on sector boundaries and the bootloader reserves the first sector (i.e. the memory between
0xA0000000 and 0xA0003FFF). You can experiment with different configurations of
Application and Calibration regions if you have not yet received your Target package. For
example, if you configure a region that uses an address that is not on a region boundary or
that enters a disallowed space note the error returned by the FBL generator.

Table 9: Memory layout of the Dummy Target

Bank Sector Start End Comment

0

0 0x80000000 0x80003FFF Reserved for FBL
1 0x80004000 0x80007FFF Available for

Application/Calibration 2 0x80008000 0x8000BFFF
3 0x8000C000 0x8000FFFF
4 0x80010000 0x80013FFF
5 0x80014000 0x80017FFF Not available for

Application/Calibration 6 0x80018000 0x8001BFFF
7 0x8001C000 0x8001FFFF Available for

Application/Calibration 8 0x80020000 0x80027FFF
9 0x80028000 0x8002FFFF
10 0x80030000 0x80037FFF

ETAS RTA-FBL Standard PORT – User Manual

48

11 0x80038000 0x8003FFFF
12 0x80040000 0x80047FFF
13 0x80048000 0x8004FFFF
14 0x80050000 0x80057FFF
15 0x80058000 0x8005FFFF
16 0x80060000 0x8006FFFF Not available for

Application/Calibration 17 0x80070000 0x8007FFFF

1

18 0x80080000 0x8008FFFF Available for
Application/Calibration

19 0x80090000 0x8009FFFF
20 0x800A0000 0x800BFFFF
21 0x800C0000 0x800DFFFF
22 0x800E0000 0x800FFFFF

2
23 0x80100000 0x8013FFFF
24 0x80140000 0x8017FFFF

3
25 0x80180000 0x801BFFFF
26 0x801C0000 0x801FFFFF

4

0 0x80200000 0x80203FFF
1 0x80204000 0x80207FFF
2 0x80208000 0x8020BFFF
3 0x8020C000 0x8020FFFF
4 0x80210000 0x80213FFF
5 0x80214000 0x80217FFF
6 0x80218000 0x8021BFFF
7 0x8021C000 0x8021FFFF
8 0x80220000 0x80227FFF
9 0x80228000 0x8022FFFF
10 0x80230000 0x80237FFF
11 0x80238000 0x8023FFFF
12 0x80240000 0x80247FFF
13 0x80248000 0x8024FFFF
14 0x80250000 0x80257FFF
15 0x80258000 0x8025FFFF
16 0x80260000 0x8026FFFF
17 0x80270000 0x8027FFFF

5

18 0x80280000 0x8028FFFF
19 0x80290000 0x8029FFFF
20 0x802A0000 0x802BFFFF
21 0x802C0000 0x802DFFFF
22 0x802E0000 0x802FFFFF

6
23 0x80300000 0x8033FFFF
24 0x80340000 0x8037FFFF

7
25 0x80380000 0x803BFFFF
26 0x803C0000 0x803FFFFF

ETAS RTA-FBL Standard PORT – User Manual

49

Integrator guidelines

Section 3.5 demonstrated how an RTA-FBL project is created in the ISOLAR-AB plugin and the
RTA-FBL instance generated. This section explains how and where the integrator can modify
this generated instance, as well as integrate the control Application Software on the ECU. This
may require adaptation of the FBL as well as adaptations of your Applications Software.
The integrator may need to make the following changes to the default generated FBL:

• Memory layout adaptation,
• Completion of user functions (optional)
• BSW module adaptation (optional),
• OS adaptation (optional),
• BLSM adaptation (optional).

The integrator may need to make the following changes to the Application Software:

• NvM layout adaptation,
• Boot jump handling.

Finally, the integrator may also need to make changes to default generated target code. The
integration guidelines for your target will be provided in your RTA-FBL Standard Target Guide.
For most targets, you will likely need to consider:

• C-code startup and trap table updates,
• MCAL adaptation,
• Completion of target-specific user functions (optional).

3.5.5 FBL: Memory Layout Adaptation

To integrate the FBL in your application the first step to do is decide how to set up your
memory regions. This is done using the configuration tool as described in Section 3.5. The
allowed range for your target is described in you RTA-FBL Standard Target Guide. An example
of a typical memory layout is depicted in Figure 24.

Figure 24 - Sample Memory Layout

ETAS RTA-FBL Standard PORT – User Manual

50

3.5.6 FBL: User Functions

You will find all user functions that you may need to complete in the generated files within
the \Ports\Standard\INFRA\Port\src folder of your generated FBL instance.

Sleep
The function Fbl_Port_GoToSleep is called by the bootloader when no UDS messages are
received after a configured amount of time. The integrator should modify this code to put
the ECU to sleep. The function is triggered depending on the FBL parameter FblSleepTimer.

Watchdog
The FBL does not implement any watchdog functionality. As an example, for the integrator,
the call Fbl_Port_WatchDogInitialise is called from Os_Start and the user should place the
code that initializes the watchdog in this function. The function Fbl_Port_WatchDogRefresh
must then be called to pet the watchdog from within a cyclic OS function. In the provided
OS, this is called every 100ms, but the integrator can call Fbl_Port_WatchDogRefresh at
whatever rate is deemed suitable.

Get the ECU Serial Number
The function Fbl_Port_GetEcuSerialNumberUserHook is called by the bootloader when the FBL
parameter FblEcuSerialNumberSupport is set to ECUSERIALNUMBER_USER_SUPPORT. You
need to return the 3 bytes value of the ECU Serial Number for DID $F18C depending on how
this is provisioned for your ECU.

Application Validation
The function Fbl_Port_UserValidApplication is called by the bootloader when all the regions
have been downloaded successfully, within RID 0xFF01 processing. The integrator may verify
if the new software is compatible and return FALSE in case of hardware/software
incompatibility or software modules incompatibility. If the function returns TRUE, after the reset
the application will be executed by the bootloader. If the function returns FALSE, RID 0xFF01
will reply with NRC 0x72 and Programming Status DIDs will report 0xF0

External Memory Reprogramming
The functions within FBL_PortUserFlashCode.c are triggered if a region is configured as
EXTERNAL using the FBL parameter FblRegionType.
Note that just one function among UserFlash_VerifyBlockCRC and
UserFlash_VerifyBlockSignature is triggered by the Fbl, depending on the FBL parameter
FblSoftwareVerificationType.

Prototype UserFlash_ReturnType UserFlash_FlashErase (uint32

TargetAddress, uint32 Length)

Parameter TargetAddress: low address of the external memory device to be
erased
Length: size of the external memory device to be erased

Return Code FBL_USER_FLASH_RESULT_SUCCESS: Erase completed successfully.
FBL_USER_FLASH_RESULT_PROCESSING: Erase is in progress and
requires additional time.
FBL_USER_FLASH_RESULT_FAILURE: Erase completed with failure. It

ETAS RTA-FBL Standard PORT – User Manual

51

will result in NRC 0x78 to RID 0xFF00
Functional Description Triggered when RID 0xFF00 – Erase Memory is received for a

region configured as external.
The integrator should start the erase process of the memory
device using its own driver.

Pre-Conditions None

Prototype UserFlash_ReturnType UserFlash_FlashWrite (uint32

TargetAddress, uint32 Length, const uint8 *SourceAddressPtr
)

Parameter TargetAddress: address of the external memory device where
data should be written
Length: size of the data to be written
*SourceAddressPtr: pointer to data

Return Code FBL_USER_FLASH_RESULT_SUCCESS: Write completed successfully
FBL_USER_FLASH_RESULT_PROCESSING: Write is in progress and
requires additional time
FBL_USER_FLASH_RESULT_FAILURE: Write completed with failure. It
will result in NRC 0x78 to Transfer Data service

Functional Description Triggered each time data from Transfer Data service is
processed. Note that Length depends on the Fbl parameter
FblBlockSize.
The integrator should start the write process of the memory
device using its own driver.

Pre-Conditions None

Prototype UserFlash_ReturnType UserFlash_VerifyBlockCRC (uint32

TargetAddress, uint32 Length, uint32 CRC)

Parameter TargetAddress: address of the external memory device to
calculate the CRC.
Length: size of the data whose CRC should be verified
CRC: Checksum received by the tester.

Return Code FBL_USER_FLASH_RESULT_SUCCESS: CRC verification completed
successfully
FBL_USER_FLASH_RESULT_PROCESSING: CRC verification is in
progress and requires additional time
FBL_USER_FLASH_RESULT_FAILURE: CRC verification completed with
failure. It will result in NRC 0x78 to RID 0xF000 VerifyDownload

Functional Description Triggered when RID 0xF000 - VerifyDownload is received for a
region configured as external.
The integrator should calculate the CRC of the memory region
and compare it with the received one. If they match, the result
should be success.

Pre-Conditions None

Prototype UserFlash_ReturnType UserFlash_VerifyBlockSignature (

uint32 TargetAddress, uint32 Length, uint8* Signature)

Parameter TargetAddress: address of the external memory device to

ETAS RTA-FBL Standard PORT – User Manual

52

calculate the signature.
Length: size of the data whose signature should be verified
Signature: Pointer to 256 bytes of signature received by the
tester.

Return Code FBL_USER_FLASH_RESULT_SUCCESS: Signature verification
completed successfully
FBL_USER_FLASH_RESULT_PROCESSING: Signature verification is in
progress and requires additional time
FBL_USER_FLASH_RESULT_FAILURE: Signature verification
completed with failure. It will result in NRC 0x78 to RID 0xF000
VerifyDownload

Functional Description Triggered when RID 0xF000 - VerifyDownload is received for a
region configured as external.
The integrator should calculate the signature of the memory
region and compare it with the received one. If they match, the
result should be success.
Note that Etas ECL may be used for signature verification if
needed.

Pre-Conditions None

Trusted Boot
RTA-FBL Standard does not natively support the so-called Trusted Boot functionality, to
determine whether the ECU software has been tampered or replaced with a malicious one.
RTA-FBL Standard offers you anyway the possibility to add this feature, providing a set of APIs
to interface with the fbl and fulfill the most common cybersecurity use cases.
The available interfaces are within FBL_Security.c and described below.

Prototype Std_ReturnType Fbl_Security_PreHostEraseHook (void)

Parameter None
Return Code E_OK: Erase can be executed by the host

E_NOT_OK: Erase can’t be executed, fbl will return NRC 0x78
Functional Description Triggered before the host start erasing PFLASH.

It may be needed to inform the Hardware Trust Anchor about
the incoming erase operation (e.g. to suspend a run time
manipulation detection).
If the host is not allowed to erase the PFLASH in that context,
the erase operation could be aborted, returning a NRC 0x78.

Pre-Conditions None

Prototype void Fbl_Security_PostHostEraseHook (void)

Parameter None
Return Code None
Functional Description Triggered after the host has completed erasing PFLASH.

It may be needed to inform the Hardware Trust Anchor about
the end of the erase operation (e.g. to resume a run time
manipulation detection).

ETAS RTA-FBL Standard PORT – User Manual

53

Pre-Conditions None

Prototype Std_ReturnType Fbl_Security_PreHostWriteHook (void)

Parameter None
Return Code E_OK: Write can be executed by the host

E_NOT_OK: Write can’t be executed, fbl will return NRC 0x78
Functional Description Triggered before the host start writing PFLASH.

It may be needed to inform the Hardware Trust Anchor about
the incoming erase operation (e.g. to suspend a run time
manipulation detection).
If the host is not allowed to write the PFLASH in that context,
the write operation could be aborted, returning a NRC 0x78.
Note that this callout is triggered several times during the
reprogramming phase, every time a Transfer Data block is
processed.

Pre-Conditions None

Prototype void Fbl_Security_PostHostWriteHook (void)

Parameter None
Return Code None
Functional Description Triggered after the host has completed writing to PFLASH.

It may be needed to inform the Hardware Trust Anchor about
the end of the write operation (e.g. to resume a run time
manipulation detection).

Pre-Conditions None

Prototype Std_ReturnType Fbl_Security_TrustedBootVerification (void)

Parameter None
Return Code E_OK: Trusted Boot verification success

E_NOT_OK: Trusted Boot verification failure
Functional Description Triggered at startup to ensure the ECU has a trusted application.

The Trusted Boot Verification should be synchronous and should
determine if the application can be executed or the ECU
software has been tampered.
Note that this callout is triggered only if all mandatory regions
have been successfully downloaded into the ECU.

Pre-Conditions None

Prototype Fbl_Security_JobResultType Fbl_Security_UpdateAuthSWTable (

const uint8 SwPartIndex)

Parameter SwPartIndex: Index of the updated region. Note that fbl will
trigger the callout using FblRegionId as index

Return Code FBL_PORT_SEC_JOB_RESULT_SUCCESS: Authenticated trusted boot
table has been updated
FBL_PORT_SEC_JOB_RESULT_PROCESSING: Authenticated trusted
boot table update is in progress and requires additional time

ETAS RTA-FBL Standard PORT – User Manual

54

FBL_PORT_SEC_JOB_RESULT_FAILURE: Authenticated trusted boot
table update has failed

Functional Description Triggered after a region has been updated, during RID 0xF000 –
Verify Download.
The integrator should trigger an asynchronous operation to
update the Hardware Trust Anchor internal reference table used
for Trusted Boot verification.
A common use case is to update the reference CMAC, with a
new calculation on the new software.

Pre-Conditions None

Name Fbl_Security_AuthSwTableType

Type Struct
Members uint8 SwPartID An index to identify the software region

to be verified.

uint8 SwPartAddr Low address of the software to be
verified.

uint8 SwPartLen Size of the software to be verified.

Description Example of the type of data that could be used by
Fbl_Security_UpdateAuthSWTable and
Fbl_Security_TrustedBootVerification

Note that the structure AuthSwTable[] is created as example, with the
regions configured with the first FBL generation.
It is up to the integrator to decide which software parts should be verified
and update the AuthSwTable[] structure accordingly.

3.5.7 FBL: BSW adaptation

The BSW modules needed by RTA-FBL and generated in the generated BSW project are listed
in Table 10. This list is the minimum setup needed for the basic FBL.
If changes are necessary in order to fulfill non-standard bootloader integration requirements,
you are allowed to modify the BSW generated configuration. You are not allowed to modify
any parameters within Fblgen_EcucValues.arxml: these configuration parameters are
highlighted in brick red and not editable by the user. This file will always be overwritten during
generation.
The integrator must always test the complete FBL after making any modifications to the
generated BSW project.

Table 10: BSW modules list

BSW Module(s) Notes

Dcm The diagnostic communication module.

MemIf; Fee; Rba_FeeFs1, NvM Memory stack modules for the NVM.

CanIf; CanSM; CanTp;
CanTp_Precompile, ComM;
ComStack; PduR

Can communication stack modules.

Crc Uses for CRC calculation in NvM.

ETAS RTA-FBL Standard PORT – User Manual

55

BSW Module(s) Notes

Rba_ArxmlGen; Rba_DiagLib;
Standard; BswM;
BswM_Precompile_PB_Variant

Additional modules required for build.

3.5.8 FBL: OS adaptation

The OS provided with this port is based on a simple cyclic scheduler. This OS does not support
interrupts and is non-preemptive. If you need to integrate additional code to the bootloader,
you will likely need to adapt this OS. This might involve adding co-routines to the existing
tasks or adding new tasks. Adding a new co-routine simply requires adding the function call
with the relevant task body in "Fbl/INFRA/Os/src/Os_Tasks.c". If you need to add a new task
with a different frequency then follow these steps:

1. Add the task to the task list in "Fbl/INFRA/Os/inc/Os_Tasks.h"
2. Add the task to Os_TaskTable in Os_SchTbl in "Fbl/INFRA/Os/inc/Os_SchTbl.c"
3. Create the task body in "Fbl/INFRA/Os/inc/Os_Tasks.c"

The OS is driven from a timer that is provided by the target through the macro
GET_SYSTEM_TIMER. Your target will also export the #define OS_TICK_TH that is used as the tick
counter for the OS. The rate at which this is ticked is target-dependent and can usually be set
by the integrator. Please review your RTA-FBL Standard Target Guide for more information on
how to set this rate.
IMPORTANT: The integrator is responsible to ensure that any modifications made to the OS
are tested to ensure that the FBL continues to operate as expected. In particular, moving the
existing co-routines into a different order or within other tasks will likely result in incorrect
behavior.

3.5.9 FBL: BLSM adaptation

The BLSM is used primarily to initialize the BSW and MCAL modules and to start the bootloader.
An integrator may need to adapt the BLSM to make the initialization calls for additional
modules. This will involve modifying one or more of the Fbl_Port_BLSM_DriverInit functions
in "Fbl/INFRA/BLSM/src/BLSM_CallOuts.c". It is strongly recommended that while additional
init functions can be added, the existing init functions calls are not moved from their current
location within the Fbl_Port_BLSM_DriverInit calls.
In choosing where to add your init functions, note that the NvM is only set up at the end of
Fbl_Port_BLSM_DriverInitOne. Therefore, if your integrated code requires the NVM, you
should add it in Fbl_Port_BLSM_DriverInitTwo.

IMPORTANT: The integrator is responsible to ensure that any modifications made to the
BLSM are tested to ensure that the FBL continues to operate as expected.

3.5.10 FBL: C-code startup and trap table updates (optional)

The startup code and trap code used for your target is described in your RTA-FBL Standard
Target Guide. The integrator may change these if required following the target guidelines,
but is then responsible for testing of the complete FBL.

3.5.11 FBL: MCAL adaptation

The MCAL modules needed by RTA-FBL for all targets are listed in Figure 3. The list is the
minimum setup needed for the basic FBL functionalities (i.e. communication, flashing, etc.).
The list does not include customer specific adaptations like external watchdog, external

ETAS RTA-FBL Standard PORT – User Manual

56

transceivers, external EEPROM, etc. See your RTA-FBL Standard Target Guide for further
information on MCAL modifications for your target.

Table 11: MCAL modules list

MCAL Module Notes

Can CAN driver

Flash Driver Driver for FLASH erase and programming. This
includes the handling of PFLASH and DFLASH, so
in some MCALs these drivers are implemented by
two different modules.

Mcu Provides core functionality such as clock
handling, mcu reset, etc.

Port Provides interface to port pin peripheral.

3.5.12 Application Software: NvM layout adaptation

Adaptation of the NvM is usually required as the application would rarely already incorporate
the FBL NvM layout. This is because the NvM is the interaction mechanism between application
and FBL. In particular, the application writes a specific Fbl flag in NvM and then resets, in order
to allow the FBL to handle the reprogramming request and to know that this request has been
issued. Moreover, the FBL could have other internal NvM blocks that need to be copied in case
of a page swap by the application. Therefore, the application should take care of the unknown
blocks configured in the FBL.
RTA-FBL Standard foresees some Mandatory and Optional blocks to be introduced in the
Application NvM layout, while suggest to not includes some FBL private blocks. In order for the
layout to be consistent, the Fee persistent IDs of the shared blocks must match between the
application and FBL. Table 12 shows the NvM blocks and their Ids that must be also configured
in the application. Note that if you already are using the Persistent IDs generated by fblgen in
your application and do want to change these, then you can instead change these values in the
FBL instance’s BSW configuration as long as you keep them consistent with the values in the
Application.

Table 12: Fbl NvM configuration blocks

Block Name Persistent
ID

Bytes Fbl-App
Shared
Block

NvM_ProgrammingConditionsBlock 2 31 Mandatory
(*)

NvM_DIDF180_BootSoftwareIdentificationBlock 3 4 Optional
(**)

NvM_DIDF181_ApplicationSoftwareIdentificationBlock 4 6 Optional
(**)

NvM_DIDF182_ApplicationDataSoftwareIdentificationBlock 5 6 Optional
(**)

NvM_DIDF18C_EcuSerialNumberBlock 6 3 Optional
(**)

ETAS RTA-FBL Standard PORT – User Manual

57

NvM_DID0100_ProgrammingCounterBootBlock 7 3 Optional
(**)

NvM_DID0101_ProgrammingCounterApplBlock 8 n·3
(****)

Optional
(**)

NvM_DID0102_ProgrammingCounterDataBlock 9 n·3
(****)

Optional
(**)

NvM_DIDF183_BootFingerprintBlock 10 5 Optional
(**)

NvM_DIDF184_ApplicationFingerprintBlock 11 n·5
(****)

Optional
(**)

NvM_DIDF185_ApplicationDataFingerprintBlock 12 n·5
(****)

Optional
(**)

NvM_DID0103_ProgrammingStatusApplBlock 13 n·2
(****)

Optional
(**)

NvM_DID0104_ProgrammingStatusCalBlock 14 n·2
(****)

Optional
(**)

NvM_ValidityFlag 15 4 No (***)

NvM_<region>ValidityFlag 16 4 No (***)

(*) Must be shared by Fbl and Application to handle the $10 02 jump
(**) Could be shared if both Fbl and Application need to access this NvM data
(***) Fbl private data management, strongly suggested to not share with Application
(****) Size of this NvM block depends on the number of FblRegions configured

Another parameter that needs to be aligned between Application and Bootloader is the Fee
Sector Layout. The sector layout depends on application and target characteristics (data
memory sizes mainly). The configuration of the Fee Sectors needs to match between FBL and
Application, otherwise the Fee will recognize it as invalid and re-format the Data Memory (thus
deleting the existing content). See your RTA-FBL Standard Target Guide for details of Fee
Sectors configuration.

3.5.13 Application Software: Boot Jump Handling

To reprogram the ECU when an application is valid and running, it is necessary for the
application to signal to the bootloader that reprogramming is required after the next reset.
This sequence is show in Figure 25.

ETAS RTA-FBL Standard PORT – User Manual

58

Figure 25: Handling of jump logic

In an AUTOSAR stack, the module responsible for the reception of the tester requests and
triggering the jump to the bootloader is the Diagnostic Communication Manager (Dcm). For
storing the information required by the bootloader, the Dcm will execute the application callout
Dcm_SetProgConditions (see Figure 26 for API description).
This callout must be implemented by the user. The goal is to hand over the information in the
parameter ProgConditions of the type Dcm_ProgConditionsType provided by Dcm and store it
in a place and format, the bootloader can access and understand.
Note that the callout Dcm_SetProgConditions allows the return value DCM_E_PENDING which
results in the Dcm_MainFunction calling Dcm_SetProgConditions in each subsequent cycle until
it returns E_OK, before the Dcm continues with the jump to bootloader.

ETAS RTA-FBL Standard PORT – User Manual

59

Figure 26: Dcm_SetProgConditions API from AUTOSAR SWS

Dcm uses the return value from the function DcmAppl_DcmGetStoreType to fill in ProgConditions
parameter of Dcm_SetProgConditions. The recommended return value is
DCM_WARMRESPONSE_TYPE
We strongly recommend to serialize the ProgConditions structure as shown in Table 13 in
order to make sure that there are no dependencies on the structure of the data due to the
compiler, compiler options, or the BSW version. You should be able to get all the values needed
to create data by using the contents of the programming conditions sent as an input parameter
to the function Dcm_SetProgConditions called from the Dcm when the Programming Session is
entered in the application.
Note that freeForProjectUse bytes are used as reprogramming request flag and should contain
exactly the data shown in Table 13.
The NvM block to store the programming conditions is NvM_ProgrammingConditionsBlock (id
2 in Table 12)

Table 13: Programming conditions data to be set in NvM as required by RTA-BSW

Name
First
byte
index

Size in
Bytes Description

ProtocolId 0 1 Active Protocol ID – Set by Dcm to identify the
protocol on which Jumping is initiated

Sid 1 1 Active Service Identifier – Set by Dcm
SubFncId 2 1 Active Subfunction Id – Set by Dcm
StoreType 3 1 Storing Type used for Storing the information

– Warm Request/Warm Response/Warm Init
SessionLevel 4 1 Active Session Level which needs to be stored

ETAS RTA-FBL Standard PORT – User Manual

60

– Set by Dcm
SecurityLevel 5 1 Active Security Level which needs to be stored

– Set by Dcm
ReqResLen 6 1 Total Request/Response length including SID

and Subfunc – Set by Dcm
NumWaitPend 7 1 Number of wait response pending triggered –

Set by Dcm
ReqResBuf 8 8 Request / Response buffer – Set by Dcm

TesterSourceAddr 16 2 Tester diagnostic address.
Note that the Dcm sets the Tester Source
Address only if
DcmDslProtocolRxTesterSourceAddr is correctly
configured for each
DcmDs/DcmDslProtocol/DcmDslConnections in
BSW configuration.

ElapsedTime 18 4 Total elapsed time – Set by Dcm
ReprogramingRequest 22 1 Reprograming of ECU requested or not – Not

Used.
ApplUpdated 23 1 Application has to be updated or not – Not

Used.
ResponseRequired 24 1 Response has to be sent by flashloader or

application – Set by Dcm
freeForProjectUse 25 6 Used to store the Fbl reprogramming request

flag. This flag is used by the Fbl to recognize
the application has received a reprogramming
request from the tester and wants the Fbl to
start the reprogramming flow and not jump
into application.
The first 4 bytes should contain the uint32
0xAAFF55AA. While the remaining 2 bytes are
not used.

To instruct the Dcm to call the Dcm_SetProgConditions callback when the Programming
Session is requested you must ensure the Dcm knows a jump to Bootloader is required. This
is achieved with the parameter
DcmConfigSet/DcmDsp/DcmDspSession/DcmSessionRows/DcmDspSessionForBoot that must be set
to DCM_OEM_BOOT for Programming Session.
When receiving a programming session request, it is suggested to instruct the Dcm to send
a NACK $78 on transition to boot, in order to allow timing extension (P2*). This
configuration is needed to avoid that a long Bootloader startup time breaks an UDS timeout
(since the $10 02 response will be sent by the bootloader after the jump). This is achieved
setting the parameter
DcmConfigSet/DcmDsl/DcmDslProtocol/DcmDslProtocolRows/DcmSendRespPendOnTransToBoot to
TRUE.

ETAS RTA-FBL Standard PORT – User Manual

61

3.6 Bootloader Update

The Flash Bootloader can be reprogrammed via UDS to upgrade the FBL of an ECU in which
the debug port is not accessible: this is achieved using the Flash Bootloader Updater.
The Flash Bootloader Updater is downloaded just like a normal application (with FblRegionId
= 0). In its code flash it holds the new flash bootloader, once started, replaces the existing
Bootloader by the new version.
If a power failure or a reset occurs during the update process, at next power on the
Bootmanager will execute again the Bootloader Updater. When the update process is
completed, the new Flash Bootloader is executed, and the application can be reprogrammed.
The figures below show a conceptual overview of the update process:

Figure 29. Initial SW:
Application is running

Figure 28. Flash Bootloader
1.0 is running: download Boot
Updater in the application
region

Figure 27. Boot Updater is
running: update Bootloader

Figure 31. Flash Bootloader
2.0 is running

Figure 30. Flash Bootloader 2.0
is running: (re-)download
Application

Figure 32. Application is running

$11 01
(ECU Reset)

ETAS RTA-FBL Standard PORT – User Manual

62

When the Boot Updater is running (as shown in Figure 29) one or more UDS NRC $78 may
be issued, depending on the flash bootloader size to update and the target underlying
characteristics, affecting erase and write speed.
When the update is completed and the new Flash Bootloader is running, (as shown in Figure
30) it replies with $51 01 UDS response, to signal the end of the procedure.
Please note that the Bootmanager is required to have a reset-safe bootloader update, and
thus it cannot be updated via UDS. Any customer-specific Bootmanager upgrade must be
addressed by the customer itself with an appropriate means (e.g. program/debug port on
the ECU PCB).
Your target will likely include a sample boot updater application, please refer to your RTA-
FBL Standard Target Guide.

ETAS RTA-FBL Standard PORT – User Manual

63

4 How to Flash the ECU with INCA and the ProF Script

This section explains how to perform the download process with INCA.

Step1: Install INCA and HW interface driver
Before starting the actual download process, INCA and the HW interface driver must be
installed on the machine that will be used to flash the ECU. In this example, we will use an
ES58x as HW interface.

1. Please make sure you are using the official released INCA V7.2.x version package,
and make sure the valid node-locked license is also installed on your testing PC,

2. Make sure that the used HW interface driver is installed correctly.

Step2: Setup the environment
Launch INCA and add a new database using the “New” button on the toolbar and name it with
your preferred db name.

Figure 33: New database creation

Right-click on the created top folder (“DEFAULT”) and select AddWorkspace.

Figure 34: Adding a workspace

Then, right-click again from the “DEFAULT” folder and select AddECU-Project (A2L):

ETAS RTA-FBL Standard PORT – User Manual

64

Figure 35: Adding an ECU project

From the dialog window navigate to the where the ProF script is located in your RTA-FBL
Standard Instance (<output_location>\fbl\output\Tools\ProF\Install) and select the file
“ECU_dummy.a2l”, and following this, from the same path, choose the file “FAKE_APPL.hex”.

Left-click on the newly created Workspace and select the HW icon on the bottom-right window.

Figure 36: HW icon

ETAS RTA-FBL Standard PORT – User Manual

65

From the newly opened window select the “Search for connected devices” option on the
toolbar, then select USB (and click OK), then UDS (and click OK) and finally associate the
ECU_dummy project, as shown in Figure 39.

Figure 37: Search of HW interface

ETAS RTA-FBL Standard PORT – User Manual

66

Figure 38: Selection of UDS interface

Figure 39: Association of ECU_dummy project

Now you can click the “Initialize Hardware” button on the toolbar and the devices should
initialize and appear as connected on the left

ETAS RTA-FBL Standard PORT – User Manual

67

Figure 40: Device connection

Step3: Install ProF script
Now you can click the “Manage Memory Page” icon on the toolbar.

Figure 41: Manage memory page selection

From the “Utilities” menu of the popup window, select the option “Configure PROF”.

Figure 42: ProF configuration selection

ETAS RTA-FBL Standard PORT – User Manual

68

In the new window, select Install and navigate to the path of RTA-FBL generated instance
<output_location>\fbl\output\Tools\ProF\Install\Standard_FBL\

Figure 43: Install ProF script

Figure 44: Selection of ProF script to install

When you click “OK”, the ProF script will be installed.

ETAS RTA-FBL Standard PORT – User Manual

69

Figure 45: ProF script installation confirmation

Step4: Flash the ECU
To start the download process switch to the “Enhanced” tab on the “Manage memory page”
window, select “Flash Programming” as Action and click on “Do It”.

Figure 46: Download Process Start

From the new dialog window, select the .hex file you want to download and click on “Open”.

ETAS RTA-FBL Standard PORT – User Manual

70

From the ProF mask that is displayed select the option you want to use and click “OK” to start
the download process. The ProF will be created according to the regions you have configured:
you can choose to reprogram only a specific region or all the regions.

Figure 47: Option Selection

ETAS RTA-FBL Standard PORT – User Manual

71

Figure 48: Download in progress

ETAS RTA-FBL Standard PORT – User Manual

72

Figure 49: Download Completed

4.1 Seed & Key Constants

A text file located in
<output_location>\fbl\output\Tools\ProF\Install\Standard_FBL\ProF\keys.txt is created to
store RTA-FBL configuration parameters FblSeedKeyConstant1 and FblSeedKeyConstant2.
This file is copied by the Prof during [INIT] section in the fixed location C:\ETASData\RTA-
FBL\STANDARD_FBL, using the RTA-FBL output location as absolute path. If you have moved
the Prof in a different path, ensure to manually copy over this file, since the batch copy will
fail.
It is necessary to have the keys.txt file in the proper location (C:\ETASData\RTA-
FBL\STANDARD_FBL) because it is needed by the SeedAndKey.dll to unlock the
FlashBootloader during the reprogramming.

ETAS RTA-FBL Standard PORT – User Manual

73

4.2 Application signature handling

If RTA-FBL configuration parameter FblSoftwareVerificationType equals “SIGNATURE”, the Fbl
expects the signature for software verification to be in the last 256 bytes of the downloaded
region.
The Fbl public key, configured via the parameter FblSecurityPublicKey, should match the
private key used for signature calculation.
Before downloading each region, INCA computes the signature of the data to be downloaded
and writes the result to the last 256 bytes of the software, using the tool Signature.exe located
within the Prof folder.
The private key used is stored into
<output_location>\fbl\output\Tools\ProF\Install\Standard_FBL\ProF\PrivateKey.pem in PEM
format and copied by INCA during Prof installation.
The private key provided within INCA Prof, matches the sample public key under
C:\ETAS\RTA-FBL_1.0.0_Standard\Ports\Standard\Samples.

ETAS RTA-FBL Standard PORT – User Manual

74

5 Privacy

5.1 Privacy Statement

Your privacy is important to ETAS so we have created the following Privacy Statement that
informs you which data are processed in RTA-FBL, which data categories RTA-FBL uses, and
which technical measure you have to take to ensure the users privacy. Additionally, we provide
further instructions where this product stores and where you can delete personal or personal-
related data.

5.2 Data Processing

Note that personal or personal-related data respectively data categories are processed when
using this product. The purchaser of this product is responsible for the legal conformity of
processing the data in accordance with Article 4 No. 7 of the General Data Protection
Regulation (GDPR). As the manufacturer, ETAS GmbH is not liable for any mishandling of this
data.

5.3 Data and Data Categories

When using the ETAS License Manager in combination with user-based licenses, particularly
the following personal or personal-related data respectively data categories can be recorded
for the purposes of license management:

• Communication data: IP address,
• User data: UserID, WindowsUserID.

5.4 Technical and Organizational Measures

This product does not itself encrypt the personal or personal-related data respectively data
categories that it records. Ensure that the data recorded are secured by means of suitable
technical or organizational measures in your IT system. Personal or personal-related data in
log files can be deleted by tools in the operating system.

ETAS RTA-FBL Standard PORT – User Manual

75

6 ETAS Contact Addresses

ETAS HQ
ETAS GmbH
Borsigstraße 24 Phone: +49 711 3423-0
70469 Stuttgart Fax: +49 711 3423-2106
Germany WWW: www.etas.com

ETAS Subsidiaries and Technical Support
For details of your local sales office as well as your local technical support team and product
hotlines, take a look at the ETAS contacts:
ETAS subsidiaries www.etas.com/en/contact.php
ETAS RTA Technical Support
Website

https://rtahotline.etas.com/

ETAS RTA Technical Support
Email

rta.hotline@etas.com

	1 Introduction
	1.1 Revision History
	1.2 Definition and Abbreviations
	1.3 References
	1.4 About this Document
	1.5 Chapter Description

	2 Introduction to ETAS RTA-FBL
	2.1 What is a Flash Bootloader?
	2.2 What is RTA-FBL?
	2.3 The Flash Tool (Tester)
	2.4 The OEM-defined Programming Sequence
	2.5 Target Dependencies and the Flash Driver
	2.6 Interaction with the Application using NvM
	2.7 One and Two-Stage Bootloaders
	2.8 Updating the bootloader
	2.9 FBL generation with the RTA-FBL ISOLAR-AB plugin
	2.10 General architecture of RTA-FBL
	2.11 Setting up your environment to generate an RTA-FBL instance

	3 RTA-FBL Standard Port
	3.1 Installation
	3.2 RTA-FBL Standard Architecture
	3.3 Supported services
	3.3.1 DIDs
	Bootloader Programming Counter – 0x0100
	Application Programming Counter – 0x0101
	Application Data Programming Counter – 0x0102
	Application Programming Status – 0x0103
	Application Data Programming Status – 0x0104
	Bootloader Software Identification – 0xF180
	Application Software Identification – 0xF181
	Application Data Software Identification - 0xF182
	Bootloader Software Fingerprint – 0xF183
	Application Software Fingerprint – 0xF184
	Application Data Software Fingerprint – 0xF185
	ECU Serial Number – 0xF18C

	3.3.2 RIDs
	Erase Memory – 0xFF00
	Verify Download – 0xF000
	Check Programming Dependencies – 0xFF01

	3.4 Reprogramming Sequence
	3.5 Creating and building an RTA-FBL instance
	3.5.1 Project creation
	3.5.2 Configuration and Generation of FBL and BSW
	FblRegions
	FblCan
	FblCore
	FblIdentification
	FblSec
	FblGeneral

	3.5.3 Files created during generation
	3.5.4 The RTA-FBL instance for the Dummy Target
	Dummy Target Memory Layout

	3.5.5 FBL: Memory Layout Adaptation
	3.5.6 FBL: User Functions
	Sleep
	Watchdog
	Get the ECU Serial Number
	Application Validation
	External Memory Reprogramming
	Trusted Boot

	3.5.7 FBL: BSW adaptation
	3.5.8 FBL: OS adaptation
	3.5.9 FBL: BLSM adaptation
	3.5.10 FBL: C-code startup and trap table updates (optional)
	3.5.11 FBL: MCAL adaptation
	3.5.12 Application Software: NvM layout adaptation
	3.5.13 Application Software: Boot Jump Handling

	3.6 Bootloader Update

	4 How to Flash the ECU with INCA and the ProF Script
	4.1 Seed & Key Constants
	4.2 Application signature handling

	5 Privacy
	5.1 Privacy Statement
	5.2 Data Processing
	5.3 Data and Data Categories
	5.4 Technical and Organizational Measures

	6 ETAS Contact Addresses
	ETAS HQ
	ETAS Subsidiaries and Technical Support

