

 User Guide

ETAS RTA-FBL v1.3.2
GM Port

Copyright

The data in this document may not be altered or amended without special notification

from ETAS GmbH. ETAS GmbH undertakes no further obligation in relation to this docu-

ment. The software described in it can only be used if the customer is in possession of a

general license agreement or single license. Using and copying is only allowed in concur-

rence with the specifications stipulated in the contract.

Under no circumstances may any part of this document be copied, reproduced, transmit-

ted, stored in a retrieval system or translated into another language without the express

written permission of ETAS GmbH.

© Copyright 2023 ETAS GmbH, Stuttgart

The names and designations used in this document are trademarks or brands belonging to

the respective owners.

ETAS RTA-FBL | User Guide V1.3.2 EN – 10.2023

3 | Contents

ETAS RTA-FBL | User Guide

Contents

1 Safety and Privacy Information .. 5

1.1 Intended Use .. 5

1.2 Target Group .. 5

1.3 Classification of Safety Messages ... 5

1.4 Safety Information.. 5

1.5 Definitions and Abbreviations .. 6

1.6 References .. 6

1.7 Chapter Description ... 7

2 Introduction to ETAS RTA-FBL .. 8

2.1 What is a Flash Bootloader? ... 8

2.2 What is RTA-FBL?.. 9

2.3 The Flash Tool (Tester) ... 10

2.4 The OEM-defined Programming Sequence .. 10

2.5 Target Dependencies and the Flash Driver .. 10

2.6 Interaction with the Application using NvM .. 10

2.7 One and Two-Stage Bootloaders .. 10

2.8 Updating the bootloader .. 11

2.9 FBL generation with the RTA-FBL ISOLAR-AB plugin .. 11

2.10 General architecture of RTA-FBL .. 13

2.11 Setting up your environment to generate an RTA-FBL instance .. 13

3 RTA-FBL GM Port .. 15

3.1 Installation .. 15

3.2 Licensing ... 17
3.2.1 ETAS License Models ... 17

3.3 Supported and unsupported features .. 20

3.4 GM RTA-FBL Architecture ... 21

3.5 Creating and building an RTA-FBL instance .. 22
3.5.1 Project creation ... 22
3.5.2 Configuration and Generation of FBL and BSW .. 25
3.5.3 Timing consideration for SBA ticket validation ... 35
3.5.4 Files created during generation ... 35
3.5.5 The RTA-FBL instance for the Dummy Target.. 36
3.5.6 FBL: Memory Layout Adaptation ... 39
3.5.7 FBL: User Functions ... 40
3.5.8 FBL: BSW adaptation ... 41
3.5.9 FBL: OS adaptation .. 42
3.5.10 FBL: BLSM adaptation .. 44
3.5.11 FBL: C-code startup and trap table updates (optional) ... 44
3.5.12 FBL: MCAL adaptation ... 44
3.5.13 FBL: Integrating an External CAN Transceiver into an RTA-FBL Project 44
3.5.14 Application Software: NvM layout adaptation .. 46

4 | Contents

ETAS RTA-FBL | User Guide

3.5.15 Application Software: Boot Jump Handling ... 47
3.5.16 Implementing a back door... 49
3.5.17 Security Peripheral Update ... 49

3.6 Preparing an application/calibration for download ... 49

3.7 Boot Update ... 50
3.7.1 The bootmanager and the boot update process ... 50
3.7.2 Preparing boot update modules .. 50

4 Contact Information ... 52

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

1 Safety and Privacy Information

1.1 Intended Use

This user manual introduces the RTA-FBL port for GM. It provides an overview of the RTA-FBL ar-

chitecture and software design. It also provides detailed information of the GM port for users

developing ECUs that will be reprogrammed with RTA-FBL. This includes information about how

to configure RTA-FBL, as well as how to integrate the Application Software on the ECU.

1.2 Target Group

This user manual is targeted to users of RTA-FBL. Users include individuals generating RTA-FBL

instances using the provided configuration tools, integrators who integrate the FBL into the final

ECU, and test engineers ensuring the correct behaviour of the bootloader within the complete

integrated system.

1.3 Classification of Safety Messages

The safety messages used here warn of dangers that can lead to personal injury or damage to

property:

 DANGER

DANGER indicates a hazardous situation that, if not avoided, will result in death or seri-
ous injury.

 WARNING

WARNING indicates a hazardous situation that, if not avoided, could result in death or
serious injury.

 CAUTION

CAUTION indicates a hazardous situation that, if not avoided, could result in minor or
moderate injury.

NOTICE

NOTICE indicates a situation that, if not avoided, could result in damage to property.

1.4 Safety Information

This software is qualified following the ETAS PEP project to QM level. It does not meet ISO 26262

ASIL requirements.

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

1.5 Definitions and Abbreviations

Term/Abbreviation Definition

ADC Analogue to Digital Convertor

AR AUTOSAR

Application Software (Appli-
cation Software)

This is the software that executes the control logic of the ECU

AUTOSAR AUTomotive Open System Architecture

BLSM Bootloader State Manager

BSW Basic Software

CAN Controller Area Network

CAN FD CAN Flexible Datarate

Dcm Diagnostic Communication Manager

DiD Data iDentifier

DPS Development Programming System – A tester tool provided by
GM

ECU Electronic Control Unit

FBL Flash Bootloader

Fee Flash EEPROM Emulation

HSM Hardware Security Module (SP)

MCAL Micro-Controller Abstraction Layer

NRC Negative Response Code from the ECU

NvM Non-Volatile Memory

OS Operative System

PEC Program Error Code as defined in [3]

RTA-x The ETAS suite of embedded SW products

SP Security Peripheral (HSM)

UDS Unified Diagnostic Services

1.6 References

Ref. Document Name Ver.

[1] GB6000 Unified Diagnostic Services
Specification

v 2.2 (March 17, 2017)

[2] GB6001 Diagnostic Infrastructure Speci-
fication

MY22 Version: Version: 4.1
(02/06/2019)

[3] GB6002 Bootloader Specification

Version 2.0 Jan-13-2021

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

1.7 Chapter Description

Chapter Description

Chapter 1 This is the document introductory chapter.

Chapter 2 This chapter introduces ECU reprogramming in general and associated
tooling, including RTA-FBL.

Chapter 3 This chapter explains how the RTA-FBL Port for GM must be installed and
used in order to allow you to create a complete GM RTA-FBL bootloader
instance. It includes important steps required for integrating RTA-FBL
with your Application Software. For targets that support boot update,
this chapter also details how to create a boot updater and prepare a
bootloader image for flashing.

Chapter 4 This chapter contains ETAS references for customer support.

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

2 Introduction to ETAS RTA-FBL
This chapter introduces basic FBL concepts independently of a particular OEM port or hardware

target. It also introduces ETAS’ FBL product, RTA-FBL, and provides information that is common

to all ports and targets. Specific information about your port and the targets supported in this

port are detailed in Chapter 3.

2.1 What is a Flash Bootloader?

A Flash Bootloader (FBL) is embedded SW that allows the reprogramming of an ECU with new Ap-

plication Software together with its calibration data using a standard communication channel. The

FBL works in combination with an external tool that runs as a desktop application (often called a

Flash Tool or Tester Tool). This tool communicates with the FBL executing on the ECU to transfer

the new Application Software. The FBL updates the ECU’s non-volatile memory with this new Ap-

plication Software.

Figure 1: High level flashing process

The FBL is a standalone program. It has a separate run-time with respect to the Application Soft-

ware, and so the FBL and the Application Software never run concurrently. After startup, the FBL

always runs first as it needs to decide whether it is to wait for new Application Software to be sent

from a tester, or if it is to start the Application Software already present in the ECU. This decision

depends on two items of state in the ECU: whether a reprogramming request flag has been set by

the Application Software before the last reset, and whether the Application Software currently

programmed in the ECU is valid.

A classic boot loading sequence showing this decision is depicted in Figure 2. Note that the Appli-

cation Software is only started if the Application Software is valid and the reprogramming request

flag is not set. In any other case, the FBL enters the Bootloader state and communicates with the

tester to reprogram the ECU.

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

Figure 2: Boot loading flowchart

2.2 What is RTA-FBL?

RTA-FBL is ETAS’ bootloader product offering. It allows integrators to create Flash Bootloader

software according to a specific OEM specification. RTA-FBL generates source code (flash boot

loader modules and basic software and MCAL configuration) from user configuration. This signifi-

cantly reduces the user effort required to get the flash bootloader up and running and integrated

with the application software.

RTA-FBL leverages the following layers defined by the AUTOSAR standard architecture:

• MCAL: provided by silicon vendor

• BSW: provided by ETAS (RTA-BSW)

Basing the underlying SW architecture on AUTOSAR allows support of other communication pro-

tocols such as CAN-FD, Ethernet, FlexRay, LIN.

RTA-FBL satisfies requirements from different OEMs for different HW architectures by creating

ports that integrate with the core RTA-FBL product. The clear separation between core (which is

OEM independent and target independent) and port (which is OEM-dependent with support for

one or more targets) makes it possible to support a wide range of OEM FBL requirements and

allows quick porting to new targets.

RTA-FBL generates source code, BSW and MCAL configuration files through the following compo-

nents:

• rtafblgen: an executable for FBL generation

• RTA-FBL GUI: a user interface for configuring the parameters used by rtafblgen for genera-
tion. The configuration options depend on the OEM port and selected target.

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

2.3 The Flash Tool (Tester)

The Flash Tool, or Tester, is a desktop application that handles the PC-side of the flashing process.

In general, the tester is used when the bootloader is in production and access to the ECU is limited

to non-debug communication protocols such as CAN, Ethernet and FlexRay.

2.4 The OEM-defined Programming Sequence

The tester communicates with the ECU by sending messages over a communication bus according

to a defined protocol. For example, some ports of ETAS’ FBL supports UDS on the CAN protocol.

This means that requests are made to the ECU over a CAN bus, and the messages sent and received

comply with the UDS standard ISO 14229-1[2]. The allowed message sequence sent to the ECU, as

well as the expected response from the ECU differs across OEMs. Therefore, the ETAS FBL supports

different OEM standards for ECU reprogramming. These are called “OEM ports” or just “ports”.

This guide specifically addresses the RTA-FBL port that implements the reprogramming standard

described in [3]. Each port supports one or more hardware “targets”.

2.5 Target Dependencies and the Flash Driver

An FBL will necessarily contain several dependencies on the underlying microcontroller target. In

addition to the typical drivers such as communication, port and timer drivers is the driver used by

the bootloader to write the FLASH memory of the ECU. This is target dependent code (usually pro-

vided by the silicon vendor), because each different target could have different flash memory prop-

erties (i.e. different technology, layout, endurance, etc.), The flash driver typically forms part of the

MCAL.

2.6 Interaction with the Application using NvM

A Bootloader and the Application Software may need to share data. For example, a Tester may

read or write data such as the ECU serial number both when the ECU is running in boot-loader

mode and when running its Application Software (e.g. by using UDS ReadDataByIndentifier and

WriteDataByIdentifier commands). Typically, this will mean that both the Bootloader and the Ap-

plication Software will need to be able to read and write the same non-volatile memory. Where

non-volatile memory is implemented by EEPROM emulation in flash such sharing may introduce

technical challenges because the Bootloader and Application Software must use the same algo-

rithms and data-structures when emulating EEPROM. (For example, if the application uses an AU-

TOSAR Fee module for EEPROM emulation then the Bootloader may need to use the same Fee

module). The requirements for compatibility between the FBL and Application Software for your

port are detailed in Chapter 3.

2.7 One and Two-Stage Bootloaders

There are two broad models for bootloaders and the model type for the bootloader described in

[3] is described in more detail in Chapter 3.

• Single-stage: In this model, the complete Bootloader is stored on the ECU (in flash), in-

cluding the code used to write a new application to flash.

• Two-stage: In this model, a Primary Bootloader is stored in the ECU. This Primary Boot-

loader is able to start the application running or download a Secondary Bootloader into

RAM. The Primary Bootloader is not able to write to the flash used to store the applica-

tion. Programming flash with a new application is done by the Secondary Bootloader.

There are three advantages to the two-stage approach:

1. The Primary Bootloader can be smaller because it does not need to include the code

to write to flash (although space savings will be limited in practice if the Primary

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

Bootloader also needs to include a flash driver to write to non-volatile memory im-

plemented with flash).

2. Since the Primary Bootloader does not contain the code to write to flash, the appli-

cation is less likely to corrupt itself or the bootloader because faulty code in the ap-

plication cannot jump to the flash reprogramming driver.

3. The Secondary Bootloader can be used to work around bugs in the bootloader in-

stalled on the ECU when it was manufactured.

Rather than an independent Secondary Bootloader, some OEMs use a single-stage Bootloader

that only excludes the flash driver used to write to the flash that stores the application. Instead,

the driver used to write to flash is downloaded and stored in RAM during the programming se-

quence. This is sometimes referred to as a software “interlock”.

2.8 Updating the bootloader

A bootloader specification might require that the bootloader be able to update itself. The way

that this is done may also be prescribed by that specification, or the specification may allow the

implementer to devise a proprietary solution. Bootloader update usually includes downloading a

“Bootloader Updater” in place of the application, which then updates the main bootloader. Integ-

rity of the ECU must be maintained so that a failure during bootloader update does not result in

bricking of the ECU. Support for bootloader update for your port (if any) is described in Chapter

3.

2.9 FBL generation with the RTA-FBL ISOLAR-AB plugin

An instance of ETAS’s FBL is generated based on the chosen OEM specification that defines the

reprogramming sequence, the chosen hardware target, and the specific configurations that are

allowed within the scope of the OEM specification. The tool for generating this FBL instance is an

ISOLAR-AB plugin, which is included with your purchased core license. An FBL generated using

this plugin is described as “an instance of RTA-FBL”. The plugin creates bootloader code as well as

a full RTA-BSW project with configuration that is needed to support the bootloader functionality.

In the same generation process, the plugin therefore optionally also invokes RTA-BSW to gener-

ate an instance of the BSW. Alternatively, the user can open the RTA-BSW project created by the

RTA-FBL plugin to inspect the generated configuration. FBL generation also results in some ports

in the generation of an MCAL project that can be adapted. Further details relevant to your port

are provided in Chapter 3.

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

ISOLAR-AB with RTA-FBL
plugin

User creates RTA-FBL
configuration in an
ISOLAR-AB project

< generate request to >

< generates >

BSW Project

< generates >

ISOLAR-AB with RTA-BSW
plugin

< generate request to >

3rd Party MCAL generator

MCAL Code BSW Code

< generates >< generates >

3rd party and
additional

Integrator Code

Integrator’s build tooling or sample
build tooling provided with RTA-FBL

port installation (scons based)

FBL.elf

< compile and link >

FBL CodeMCAL Project

< generates >

< generate request to >

Integrator changes possible
but strictly limited to those
specified for Port

Figure 3: The process of generating an RTA-FBL instance

The tool process for generating an RTA-FBL instance is shown in Figure 3. ETAS-provided tooling

allows the integrator to create the bootloader-specific application code (through the RTA-FBL

plugin for ISOLAR-AB), and the BSW code (through the RTA-BSW plugin for ISOLAR-AB). The

MCAL code must be created using a 3rd party tool, typically provided by the silicon vendor.

Note that the RTA-FBL ISOLAR-AB plugin generates source code that includes some sample code

that may require modification by the integrator. The integrator also has the option to add further

integration code. Finally, all source code needs to be integrated and built using either the sample

build scripts provided with RTA-FBL (based on scons or cmake) or the integrator’s own build tool-

chain.

IMPORTANT: RTA-FBL tests are carried out by ETAS for various FBL configurations that create for

each configuration different bootloader code, an MCAL project and a BSW project. Since the inte-

grator can make adaptations to specified sample code, the generated MCAL project and the gen-

erated BSW project, this may result in a final software stack that is not tested. For this reason, it

is ultimately the integrator’s responsibility to test that the complete bootloader works with any

changes made to any code or projects generated by RTA-FBL. Please read the important integra-

tor guidelines provided in Chapter 3 for information relevant to your port.

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

2.10 General architecture of RTA-FBL

An instance of RTA-FBL consists of five types of module as shown within the complete RTA-FBL

architecture in Figure 4. These are:

1. Core bootloader modules (in blue); these are generated from the RTA-FBL ISOLAR-AB plugin
and must not be modified.

2. BSW modules (in orange); these are standard AUTOSAR BSW modules generated by RTA-
BSW and must not be modified.

3. Port-specific bootloader modules (in yellow): these are generated by the RTA-FBL ISOLAR-
AB plugin and must not be modified. They implement the bootloader features that are spe-
cific to an OEM.

4. Port-specific bootloader modules (in green) generated from the RTA-FBL ISOLAR-AB plugin
that can be modified by the integrator. For example, the scheduler with callouts to main
functions is provided in all ports as a sample OS, and can be modified. Most ports will also
include integration code that can be used as provided in samples or completed by the inte-
grator.

5. 3rd-party modules, and in particular the MCAL.

As noted in Section 2.9, you will need to install a number of tools in order to generate a complete

instance of RTA-FBL with all required modules as shown in Figure 4. A number of integration

steps will also be required to build your software. Details for your specific OEM port and target

are also given in Chapter 3, including the folder structure of a generated RTA-FBL instance that

contains the code for the modules in Figure 4.

Figure 4: General architecture of an RTA-FBL instance

2.11 Setting up your environment to generate an RTA-FBL instance

In order to generate an instance of RTA-FBL, you will need to install the tools shown in Table 1.

Once you have the above packages, you will be able to generate an instance of RTA-FBL. In order

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

to build the instance, you will also need to have installed the 3rd party MCAL as well as the rele-

vant compiler toolchain required by your target as described in your GM FBL Target Guide.

Table 1: Tool versions

Tool Name Version Description

ISOLAR-AB 9.1.0 RTA-FBL configurator tool.

RTA-FBL GM Port 1.3.2 FBL generator plugin for ISOLAR-AB.

.NET framework 3.5 This is required by the ETAS license management. In
most cases, you will already have this installed on
your machine.

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

3 RTA-FBL GM Port
This chapter describes the GM Port of RTA-FBL. It provides specific information relevant to this port

that expands on the general RTA-FBL features described in 2. This chapter assumes that the reader

is familiar with the GM Specifications in [1], [2] and [3], and all relevant referenced specifications

therein. Reference is made to these documents when describing the configuration and implemen-

tation-specific features of the GM Port of RTA-FBL.

3.1 Installation

This section describes the installer for the GM port of RTA-FBL. As noted in Section 2.11, you

need to install this package in addition to ISOLAR-AB and RTA-BSW. This installer is described fur-

ther in this section.

In order to install RTA-FBL, follow the instructions below. At the end of this installation, the PC

needs to restart.

Step 1: Execute the file RTA_FBL_1.3.2_GM.exe. When the welcome window is displayed, select

the desired installation folder by typing the desired location or by clicking “Browse”. Then click

“Next”.

Figure 5: Welcome window

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

Step 2: Select the ISOLAR-AB version that will support the plugin by using “Browse”. The mini-

mum required version is 9.1.0. Then click “Next”.

Figure 6: ISOLAR-AB version selection

Step 3: Wait until the installation is complete.

Figure 7: Installation progress

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

Step 4: After the installation is completed, click on “Finish” to close the installer.

Figure 8: Installed Components

3.2 Licensing

To be able to work with an ETAS software product, you require a license. This section contains

basic details on ETAS License. Details concerning the scope of the licenses and other legal aspects

can be found in “Terms and Conditions”.

3.2.1 ETAS License Models

There are two different license models available for licensing RTA-FBL software:

Machine-Named License, Local

• A license of this type is managed by the user himself/herself.

• As it is linked to a particular PC (more precisely: to the MAC address of the Ethernet

adapter), it is valid wherever the PC is used.

• When you change your PC, you require a new license

Concurrent (or Floating) License, Server-Based

• The licenses are provided for the specific user names. Several users share a limited

number of licenses.

How to get a License

Contact the responsible person, if your company has a tool coordinator and server-based license

management for ETAS software. Otherwise (in case of a machine-named license) you obtain your

license from the ETAS license-portal (the URL is shown on your Entitlement Certificate).

There are three ways of logging in on the welcome page:

Activation ID: Once you have logged in, a specific activation is visible and can be managed –

the activation ID is shown on your Entitlement Certificate.

Entitlement ID: All activations of the entitlement are visible and can be managed (e.g. for a

company with just one entitlement).

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

E-mail and password: All activations of the entitlements assigned to the user account are visi-

ble and can be managed (e.g. for a tool coordinator responsible for several entitlements).

If you need help in the portal, click Help link.

What Information is required?

Information on the hosts must be entered to activate licenses:

Machine-named license: The MAC address of the Ethernet adapter to which the license is to

be bound is required.

 Concurrent (floating) license: You need a server host or a server triad.

Note: If this data changes (e.g. due to changes in the hardware or a change of user), the li-

cense must be given a “rehost”. This procedure is also described in the portal help file.

License File

The result of your activities is the provision of a file <name>.lic with which you can license your

software in the ETAS License Manager.

Open ETAS License Manager:

• Click All Programs®->ETAS®License Management®->ETAS License Manager on Windows 7

Start menu.

<or>

• Click ETAS License Manager directly on “Apps” view in the Windows 8 / Windows 8.1 / Win-

dows 10 Start menu.

Check License Status:

• Open the ETAS License Manager.

• Check the “Status” column.

The ETAS License Manager contains one entry for each installed product. The symbol at the be-

ginning of the entry and the “Status” column entry indicates if a valid license has already been

obtained or not.

Figure 9. License Manager (Installed Licenses)

To add a License file:

• Open the ETAS License Manager.

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

• Select the menu, File->Add License File.

Figure 10. Add a License

The “Add License File” window opens.

• Next to the “Select License File” field, click the [. . .] button to select the .lic file.

• Click OK.

Figure 11. Add a License File.

The “ETAS License Manager” window shows information on the selected license. The “Feature

Version” column shows the version number of the license, not the version number of the soft-

ware.

Warning: If the green symbol is not displayed, there might be a problem with the license file or

the license relates to another product. Additional information on ETAS License Manager can be

found in the “Online Help” of the ETAS License Manager.

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

3.3 Supported and unsupported features

This version targets supports all the features described in [3] with the following exceptions

noted:

• Bit-difference library: This optional feature is not supported.

• LZMA compression: This feature is not supported. Note that GM do not require this feature
to be supported if the download time requirements are met. If downloads do not meet
these requirements, consider using ARLE compression which is supported in this port.

• Multiple processors: Only one processor is supported in this version. Therefore, only one
application and its association calibration modules will be accepted for download by the
bootloader. This also limits the maximum number of calibration partitions to 14 and the
maximum number of calibration modules to 19 (calibration module Ids 2 through to 20).

• The optional integrity check validation of the bootloader during initialization is not sup-
ported.

• ECU Regionalization: This feature is not currently supported.

• Bootloader Secure Parameters: This feature is not currently supported.

• Security Peripheral Update: While this feature is supported, a dedicated memory area for
storing the downloaded update package is required. You cannot use an application or cali-
bration space to store the SP update package.

The integrator should also note the following:

• Bootloader update is not required in [3]. Although bootloader update is not natively sup-
ported in the port, support may have been implemented for your chosen target. Please see
your GM FBL Target Guide for additional information on whether bootloader update is sup-
ported for your target.

• The block size set in the configuration of the bootloader as described in Section 3.5.2 must
be respected for all blocks sent from the tester except for the last block that can be smaller
than the configured block size.

• As result of a limitation in the types of frames supported by RTA-BSW, functional addresses
should only be used for single-frame communication when using CAN. All multi-frame com-
munication should be done using physical Can Ids for CAN communication.

The following services and subservices as described in [2] and [3] are supported:

Service Subfunction Important config Comments

0x10 – Diagnos-

ticSessionControl

01 P2ServerMax is set to 0.1

seconds and
P2StartServerMax is set

to 5 seconds.

Default session

02 Programming Session

03 Extended Session

0x22 – ReadData-

ByIdentifier
N/A

All DiDs noted in [2] to

be required by the boot-

loader are supported

Used to read data from

the Fbl

0x27 – SecurityAc-

cess
01,03,05

Note that in boot mode,

requesting a seed auto-
matically unlocks the

ECU. The returned seed

consist of 31 bytes all
set to 0. No key needs

to be sent, and the pair-
ing Send Key

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

subfunctions are not

supported.

0x28 – Communi-

cationControl

00 N/A enableRxAndTx

03 N/A disableRxAndTx

0x31 – Routine-

Control

01 0xFF00 as identifier Erase memory region

01 0x0209 as identifier Set PSI

01 0xFF01 as identifier
Check programming de-

pendencies

01 0x0300 as identifier

Ephemeral Test Memory
Erase. Not supported,

and therefore returns

0x10 to indicate this.

01

03
0x3C2 as identifier SP Programming

0x34 – Re-

questDownload
N/A N/A Request for download

0x36 – Transfer-

Data
N/A N/A

Transfer of blocks (both

application and calibra-

tion)

0x37 – Re-

questTransferExit
 N/A Compete transfer

0x3E – Tester-

Present
00 N/A Tester present

0x85 – Con-

trolDTCSettings

01 N/A

Set On: Configured, but
DTC is not supported

while in boot mode.

02 N/A

Set Off: Configured, but

DTC is not supported

while in boot mode.

3.4 GM RTA-FBL Architecture

Figure 12 provides a high-level view of RTA-FBL architecture for GM. The communication, memory

and diagnostic stacks are based on RTA-BSW and support the AUTOSAR architecture and method-

ology for source code configuration and generation. The rest of the components, except for the

MCAL, are provided by ETAS. The modules that comprise the RTA-FBL instance for a GM port are:

1. Core bootloader modules (in blue); these are generated from the RTA-FBL ISOLAR-AB plugin
and must not be modified by the integrator.

2. Standard AUTOSAR BSW modules (in orange); these are generated by RTA-BSW and should
not be modified by the integrator.

3. The GM-specific port modules (in yellow); these are generated by the RTA-FBL ISOLAR-AB
plugin when the GM port is selected and must not be modified by the integrator. The Port
module implements the bootloader features that are specific to the GM specification
[1][2][3] whereas the ECL is the ETAS Crypto library used for message digest and signature
calculation.

4. The GM-specific sample modules (in green); these are generated by the RTA-FBL ISOLAR-AB
plugin when the GM port is selected and may be modified by the integrator:

o The OS is a basic cyclic scheduler that can be replaced by any other scheduler (e.g. a
fully-configured RTA-OS) as long as the calls to the relevant main functions are made

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

at the correct periods as in the provided samples. See Section 0 for further details
on how to adapt this module.

o The BLSM contains code for initializing the Bootloader. Changes can be made here
by the integrator if other modules are to be integrated (e.g. other BSW modules) but
changes should not be made to the functions that interacts with the core FBL mod-
ules. See Section 3.5.10 for further details on how to adapt this module.

5. The GM-specific third-party modules (in violet); these are not generated by the RTA-FBL ISO-
LAR-AB plugin and must be integrated separately by the integrator to add support for the
Security Peripheral. See Section 3.5.17 for further details.

6. The MCAL modules and the Port-Target interface module (in black); the modules shown are
those required by the GM port of RTA-FBL. The integrator may add additional modules re-
quired for a specific ECU. For example, the ADC module would likely be required if the inte-
grator wishes to check the battery voltage or other system operating conditions required
for the specific ECU when populating the functions described in Section 3.5.7. The GM port
ships with a dummy target that contains no MCAL. Please see your target user guide for a
sample MCAL project that has been tested with the full bootloader stack.

Figure 12: GM architecture of an RTA-FBL instance

3.5 Creating and building an RTA-FBL instance

This section explains how to create an ISOLAR-AB project to configure and generate an instance of

RTA-FBL compliant with the GM bootloader specification in [3]. The tooling described in this sec-

tion has been tested with Windows 10.

3.5.1 Project creation

A new FBL project is created in ISOLAR-AB. As shown in Figure 13, create a new RTA-CAR project

by clicking the “New” dropdown button and selecting “RTA-CAR Project”.

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

Figure 13: RTA-CAR project creation

If RTA-CAR Project is not present, select “Project” and search for “RTA-CAR Project” in the new

window, as shown in Figure 14.

Figure 14: RTA-CAR project

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

In the New RTA-CAR Project window, choose a name for your project and select the 1.3.2.GM

plugin under RTA Tools as shown in Figure 15. Note that the other RTA-Tools are not to be config-

ured. The BSW Generator can be set to any BSW generator you have available. This BSW generator

will not be used during BSW generation as RTA-FBL uses its own internal BSW generator.

Figure 15: New RTA-FBL Project

Next, click on the three dots icon to open the window “Additional Project Settings” and select the

target from the dropdown list as shown in Figure 16.

Figure 16: Select Target

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

Once complete, clicking the Finish button will result in the creation of the FBL project.

Figure 17 shows the result of a successful project creation in the console window.

Figure 17: Console window upon successful project creation

3.5.2 Configuration and Generation of FBL and BSW

Next, complete the FBL configuration parameters. In the AR Explorer view, double click on one of

the items under Bsw > Bsw Module Description > FBL, as shown in Figure 18.

Figure 18: Accessing the FBL configuration parameters

The user can now edit the base configuration parameters in the RTA-FBL Editor window. Figure 19

shows an example of the port-specific configuration parameters. An explanation of each parame-

ter is provided at the end of this section.

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

Figure 19: Edit Configuration Parameters

Once complete, the user can generate the RTA-FBL instance first by clicking on “Open RTA Code

Generator dialog…” as shown in Figure 20 and then, in the opened RTA Code Generator window,

by clicking Run as shown in Figure 21.

Figure 20: Open RTA Code Generator Dialog

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

Figure 21: RTA Code Generator

Note the two options that are available:

• Generate BSW: This will automatically generate the BSW after FBL generation using the BSW
configuration generated by the FBL generator.

• Overwrite BSW default values: If this option is selected, any manual changes you have made
to the BSW configuration after the last FBL generation will be lost and overwritten by default
values. Note that this option should only be selected once you have generated the BSW at
least once (using the option “Generate BSW” as described above).

o IMPORTANT: The FBL generator will always overwrite all BSW configuration held in
the configuration file Fblgen_EcucValues.arxml, even if the “Overwrite BSW default
values” option is selected. The configuration in this file should never be modified as
these values are completely defined by the configuration of the bootloader.

On clicking Run, the RTA-FBL instance is generated. Figure 22 shows the result of a successful gen-

eration in the console window.

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

Figure 22: Console Window on Successful Generation

To complete the FBL instance, the user must generate the BSW code by selecting the BSW mod-

ules for which the code should be generated in the RTA-BSW CodeGen tab of the RTA Code Gen-

erator window, as shown in Figure 23.

Figure 23: RTA-BSW CodeGen tab

Once complete, check the box Generate BSW in the Fbl Main tab of the RTA Code Generator win-

dow and click Run.

The user can re-generate the BSW code by clicking on Generate RTA-FBL as shown in Figure 24.

Upon successful generation, the popup message in Figure 25 is shown.

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

Figure 24: Generate RTA-FBL

Figure 25: Successful generation

Table 2 describes the parameters that the user can configure. The letters ‘N’, ‘Y’ ‘M’ and ’O’ are

used to indicate “No”, “Yes”, “Mandatory” and “Optional” respectively. The column “Requires

BSW regen.” indicates whether the BSW needs to be re-generated in case the associated parame-

ter has been changed. Note that the Application, Calibration and Bootloader spaces each contain

sub containers with each sub container containing a region with a high and low address. As re-

quired by [3], there must be at least one application space configured. The allowed range for

each region in a space that can be specified is different for each target and can be found in your

GM FBL Target Guide.

Note that your target may also specify parameters that are unique to that target, or restrict al-

lowed configuration ranges for some parameters. These will also be listed in your GM FBL Target

Guide.

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

Table 2: Configuration parameters of the GM port of RTA-FBL

Config Group Parameter Description
Requires BSW

regen.
Optional or Mandatory

Fbl {Applica-
tion, Calibra-
tion, Boot-
loader,
Sp}
Space

Fbl<space_name>RegionAddressHigh

These parameters of a region in the Applica-
tion, Calibration, Bootloader and SP spaces
define the memory range of that region. Note
that for the SP space, only one region can be
configured.

The BootloaderSpace parameters are also
used to configure the boot updater if this is
supported for your target. The generated
boot updater application will be set up to
erase and program the memory regions de-
fined by the BootloaderSpace parameter.

N

An Application Space
and Bootloader Space is

required. All other
spaces are optional.

Fbl<space_name>RegionAddressLow

FblPort

FblSecurityPublicKey

The Security Public Key stored in the Boot
Info Block. Select a text file that contains this
key in hex. This file should contain 512 char-
acters that define the 256-byte hex value of
the key. A sample key is provided for you in
the file /Ports/GM/Samples/sample_key.txt
of your bootloader installation.

N M

FblSubjectName
The ECU Subject Name stored in the Boot
Info Block. Enter 16 ASCII characters that de-
fine this parameter

N M

FblEcuName
The ECU Name stored in the Boot Info Block.
Enter 8 ASCII characters that define this pa-
rameter.

N M

FblBCID
The BCID stored in the Boot Info Block. Enter
an integer value between 0 and 0xFFFF.

N M

FblDLS
The DLS stored in the Boot Info Block. Enter 2
ASCII characters that define this parameter.

N M

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

FblHexPartNumber
The Hex Part Number stored in the Boot Info
Block. Enter an integer value between 0 and
0xFFFFFFFF.

N M

FblPortClientAddress
The default client address. Enter an integer
value between 0xF1 and 0xF6.

N O

FblAsciiPartNumber

The ASCII Part Number stored in the Boot
Info Block. Enter 16 ASCII characters that de-
fine this parameter. Sets the FBL generator
parameter AsciiPartNumber.

N O

FblDiagnosticAddress

The diagnostic address of this ECU. Enter an
integer value between 0x1 and 0xFF. If Diag-
nosticAddressIsStatic is set, then this is the
diagnostic address of the ECU. If it is not set,
then the diagnostic address is read from NvM
and this value is the default ROM value in
case the read from NvM fails.

Y(****) M

FblDiagnosticAddressIsStatic
Specifies if the Diagnostic Address is static or
if it needs to be read from NvM. Can be set to
either “true” or “false”.

Y(****) M

FblGMBaseModelPartNumber
The GM Base Model Part Number required
for DiD 0xF1CC. Enter an integer value be-
tween 0 and 0xFFFFFFFF.

N M

FblGMBaseModelPartNumberAlpha-
Code

The GM Base Model Part Number Alpha Code
required for DiD 0xF1DC. Enter 2 ASCII char-
acters that define this parameter.

N M

FblProtectedCalPartitionsIds

The calibration partitions which are pro-
tected. Enter a comma-separated list of Ids
with the smallest allowed Id being 2. Leave
empty if no calibration partitions are pro-
tected.

N O

FblBlockSize
The download block size in bytes. Enter an in-
teger value between 16 and 4096 that is a

N O

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

multiple 16. If no value is entered, then the
default value of 256 is used.

FblFlashBufferSize

The size of the flash buffer in bytes. Enter an
integer value between 1024 and 6144 that is
a multiple of the target write alignment and
greater than the block size and any header.

N M

FblCompressBufferSize

The size of the compress buffer in bytes. En-
ter an integer value between 16 and 6144
that is a multiple 16 and greater than the
block size.

N M

FblSecurityTimeWindow

The maximum amount of security processing
in microseconds that can be done before
yielding control back to the OS. Enter an inte-
ger value between 1 and 1000000.

N M

FblMessageDigestBlockSize

The maximum number of bytes that can be
processed during message digest validation
before yielding control back to the OS. If not
specified, the default is set to 1024 bytes.

N O

FblDecompressTimeWindow

The maximum amount of decompression pro-
cessing in microseconds that can be done be-
fore yielding control back to the OS. Enter an
integer value between 1 and 1000000.

N M

FblPadByte
The byte to be used for padding. Enter an in-
teger value between 0 and 0xFF. Leave empty
if padding is not required.

N O

FblNetwork

The underlying can network (CAN or Ether-
net). Note that this value depends on the
communication channel supported by the
target.

Y M

FblEthPhysicalAddress
The physical MAC address of the Ethernet
ECU. Enter a value in the format
FF:FF:FF:FF:FF:FF.

Y M(*)

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

FblEthRemoteIpAddress
The remote IP address of the device connect-
ing to this ECU. Enter a value in the format
111:111:111:111.

Y M(*)

FblEthRemotePort
The remote IP port of the Ethernet ECU. En-
ter a value between 1 and 65535.

Y M(*)

FblEthStaticIp
The local, static IP address of the Ethernet
ECU. Enter a value in the format
111:111:111:111.

Y M(*)

FblEthNetMask

The network mask of the Ethernet ECU in
CIDR Notation. Set a value between 0 and 32
that describes the number of significant bits
defining the network number or prefix of the
IP address.

Y M(*)

FblEthLocalPort
The local IP port of the Ethernet ECU. Enter a
value between 1 and 65535.

Y M(*)

FblEthNetworkType

The network type that can be IP_NET-
WORK_1_INFOTAINMENT or IP_NET-
WORK_2_ACTIVE_SAFETY. Together with the
diagnostic address, this defines the logical ad-
dress of the ECU.

Y M(*)

FblEnableCanFd
This specifies whether CanFd support is to be
enabled. Can be set to either “true” or
“false”.

Y M(**)

FblEcuIdSupport

Specifies if the user callback function
Fbl_Port_GetEcuIdUserHook() is to be called
to read the Ecu Id, or if the Ecu Id is to be
read from NvM. If set to ECUID_USER_SUP-
PORT, then the callback function is called. If
set to ECUID_NVM_SUPPORT, then the Ecu Id
is read from NvM. If not specified, then the
default behavior is to use NvM (i.e. the be-
havior is as if ECUID_NVM_SUPPORT is con-
figured).

N O

ETAS RTA-FBL GM PORT – User Manual

ETAS RTA-FBL | User Guide

FblReprogrammingRequestFlag

For targets that support the reprogramming
request flag in RAM, this parameter can be
set to REPROGRAMMING_FLAG_NVM or RE-
PROGRAMMING_FLAG_RAM to indicate
whether the jump from Application to FBL
should be done via NvM or via a RAM flag.

Y O

FblSpUpdateSupported

Specifies whether updating of the security
peripheral is to be supported (set to SP_UP-
DATE_ON) or not (SP_UPDATE_OFF). Note
that even if SP update is not required, this pa-
rameter should be set to SP_UPDATE_ON if
compatibility checks between the HSM appli-
cation and software application is required.

N M

FblBlSpblCid
The FBL-HSMFBL compatibility id. Enter an in-
teger value between 0 and 65535.

N M(***)

FblCore

EraseTimeout
Max time in milliseconds for erase flash be-
fore timing out. Enter an integer value be-
tween 1 and 100000.

N M

VerifyTimeout
Max time in milliseconds for PSI setting be-
fore timing out. Enter an integer value be-
tween 1 and 100000.

N M

WriteTimeout
Max time in milliseconds for write on flash
before timing out. Enter an integer value be-
tween 1 and 100000.

N M

StartAddress
Memory address of first instruction of appli-
cation software.

N M

(*) The parameter is present only if FblNetwork = ETH

(**) The parameter is present only if FblNetwork = CAN

(***) The parameter is required only if FblSpUpdateSupported = SP_UPDATE_ON

(****) For CAN configurations this is used as part of the Can Id. For Ethernet configurations, this is used in PDU headers.

35 | RTA-FBL GM Port

ETAS RTA-FBL | User Guide

3.5.3 Timing consideration for SBA ticket validation

The SBA ticket validation is done during bootloader initialization. This process could take

in the order of a few seconds to complete. During this time, an erase request which is re-

quired before programming any partition will return a pending NRC. This must be consid-

ered in the EraseTimeout unless your tester programming script (your utility file in DPS)

already provides a delay after entering the programming session.

The DiD F0F2 for reading the Boot Initialization Status also needs to wait for the SBAT

ticket validation to complete before it can provide a valid response. In the case of this DiD,

you will get a general reject response (NRC 0x10) until the SBAT ticket has been validated.

3.5.4 Files created during generation

When you generate an instance of the GM RTA-FBL using the RTA-FBL plugin for ISOLAR-

AB, a series of files are created within a number of folders that you then use to build your

RTA-FBL instance. Table 3 summarizes the folder structure created for the GM port. Addi-

tional folders will be created that contain the target-specific elements, such as target code

and sample build scripts. See your RTA-FBL GM Target Guide for details of the content of

these additional folders.

Table 3: Files created by RTA-FBL generation

L1 Folder Description

./ The home of the RTA-CAR project

./fbl/input Internal files for RTA-CAR created during project creation. Do not

modify these files.

./fbl/output/Fbl/Bootloader This contains the core (port-independent and target-independent)

modules.

./fbl/out-

put/Fbl/BootUpdater

This contains the boot updater for this project. The boot updater is

a completely separate application that is generated by the fbl gen-

erator but must be built independently of the bootloader. This

folder is created only if your target supports boot update.

./fbl/output/Fbl/BSW This folder contains the RTA-BSW project used to generate the FBL

BSW modules. You can investigate the configuration used for the

BSW modules of the FBL. If the configuration in the project is man-

ually changed and a new BSW generated, then it is the integrator’s

responsibility to test any changes do not affect the bootloader’s

correct functionality.

./fbl/output/Fbl/INFRA/BCL This is the ETAS crypto library (ECL).

./fbl/output/Fbl/IN-

FRA/BLSM

The BLSM contains code for initializing the Bootloader. The func-

tions in ./src/BLSM_CallOuts.c can be changed as described in Sec-

tion 3.5.10, but the functions in BLSM_Main.c should not be

changed. It is the integrator’s responsibility to test any changes

made in the BLSM do not affect the bootloader’s correct function-

ality.

36 | RTA-FBL GM Port

ETAS RTA-FBL | User Guide

./fbl/output/Fbl/INFRA/OS The OS contains the cyclic scheduler that calls the module main

functions. The OS is provided as a fully functioning and tested sam-

ple, but the integrator may replace the OS as described in Section

0. For example, the integrator may wish to use RTA-OS in order to

more easily configure interrupts for other software integrated with

RTA-FBL. It is the integrator’s responsibility to test any changes

made to the OS do not affect the bootloader’s correct functional-

ity.

./fbl/output/Fbl/INFRA/Port This folder contains the code that implements port-specific func-

tionality. This code should not be modified by the integrator with

the exception of the file FBL_PortUserCode.c as described in Sec-

tion 3.5.7.

./fbl/output/Fbl/IN-

FRA/Stubs

This folder contains stub code necessary due to the AUTOSAR ar-

chitecture. Files in this folder should not be modified by the inte-

grator.

3.5.5 The RTA-FBL instance for the Dummy Target

The dummy target provided with the GM Port cannot be built. You can only use the gener-

ated code as a reference to explore how different parameters change the generated FBL

instance. Your GM FBL Target Guide will provide information on how to build an instance

of the bootloader for your real target.

The FBL for your target will have undergone an in-depth testing using the compiler and

MCAL that you have chosen. The GM FBL Target Guide for your target will indicate the tools

and their versions that you must have to create a buildable FBL instance. All targets use a

common base that require the tools as described in Table 1.

Note that although different compilers supported by your MCAL, as well as other MCAL

versions for this target should work, these have not been tested. If you do need to gener-

ate your bootloader for a different MCAL/compiler combination than that listed above, it

is recommended that you first contact ETAS support team.

Dummy Target Memory Layout

To allow the user to experiment with different memory space configurations, the dummy

target is set up to mimic the memory layout of Infineon’s TC275 processor. This processor

has a memory layout as shown in Table 4. Memory regions of a space must begin on sector

boundaries and the bootloader reserves the first sector (i.e. the memory between

0xA0000000 and 0xA0003FFF). You can experiment with different configurations of Appli-

cation, Calibration and Bootloader space if you have not yet received your Target package.

For example, if you configure a space that uses a memory region that is not on a region

boundary or that enters enter a disallowed space and note the error returned by the FBL

generator.

Table 4: Memory layout of the Dummy Target

37 | RTA-FBL GM Port

ETAS RTA-FBL | User Guide

Bank Sector Start End Comment

0

0 0xA0000000 0xA0003FFF Reserved for FBL

1 0xA0004000 0xA0007FFF Available for Applica-

tion/Calibration
2 0xA0008000 0xA000BFFF

3 0xA000C000 0xA000FFFF

4 0xA0010000 0xA0013FFF

5 0xA0014000 0xA0017FFF Not available for Applica-

tion/Calibration
6 0xA0018000 0xA001BFFF

7 0xA001C000 0xA001FFFF Available for Applica-

tion/Calibration
8 0xA0020000 0xA0027FFF

9 0xA0028000 0xA002FFFF

10 0xA0030000 0xA0037FFF

11 0xA0038000 0xA003FFFF

12 0xA0040000 0xA0047FFF

13 0xA0048000 0xA004FFFF

14 0xA0050000 0xA0057FFF

15 0xA0058000 0xA005FFFF

16 0xA0060000 0xA006FFFF Not available for Applica-

tion/Calibration
17 0xA0070000 0xA007FFFF

1

18 0xA0080000 0xA008FFFF Available for Applica-

tion/Calibration

19 0xA0090000 0xA009FFFF

20 0xA00A0000 0xA00BFFFF

21 0xA00C0000 0xA00DFFFF

22 0xA00E0000 0xA00FFFFF

2
23 0xA0100000 0xA013FFFF

24 0xA0140000 0xA017FFFF

3
25 0xA0180000 0xA01BFFFF

26 0xA01C0000 0xA01FFFFF

4

0 0xA0200000 0xA0203FFF

1 0xA0204000 0xA0207FFF

2 0xA0208000 0xA020BFFF

3 0xA020C000 0xA020FFFF

4 0xA0210000 0xA0213FFF

5 0xA0214000 0xA0217FFF

6 0xA0218000 0xA021BFFF

7 0xA021C000 0xA021FFFF

38 | RTA-FBL GM Port

ETAS RTA-FBL | User Guide

8 0xA0220000 0xA0227FFF

9 0xA0228000 0xA022FFFF

10 0xA0230000 0xA0237FFF

11 0xA0238000 0xA023FFFF

12 0xA0240000 0xA0247FFF

13 0xA0248000 0xA024FFFF

14 0xA0250000 0xA0257FFF

15 0xA0258000 0xA025FFFF

16 0xA0260000 0xA026FFFF

17 0xA0270000 0xA027FFFF

5

18 0xA0280000 0xA028FFFF

19 0xA0290000 0xA029FFFF

20 0xA02A0000 0xA02BFFFF

21 0xA02C0000 0xA02DFFFF

22 0xA02E0000 0xA02FFFFF

6
23 0xA0300000 0xA033FFFF

24 0xA0340000 0xA037FFFF

7
25 0xA0380000 0xA03BFFFF

26 0xA03C0000 0xA03FFFFF

39 | RTA-FBL GM Port

ETAS RTA-FBL | User Guide

Integrator guidelines

Section 3.5.1 demonstrated how an RTA-FBL project is created in the ISOLAR-AB plugin

and the RTA-FBL instance generated. This section explains how and where the integrator

can modify this generated instance, as well as integrate the control Application Software

on the ECU. This may require adaptation of the FBL as well as adaptations of your Applica-

tions Software.

The integrator may need to make the following changes to the default generated FBL:

• Memory layout adaptation,

• Completion of user functions

• BSW module adaptation (optional),

• OS adaptation (optional),

• BLSM adaptation (optional).

The integrator may need to make the following changes to the Application Software:

• NvM layout adaptation,

• Boot jump handling.

Finally, the integrator may also need to make changes to default generated target code. The

integration guidelines for your target will be provided in your RTA-FBL GM Target Guide. For

most targets, you will likely need to consider:

• Completion of target-specific user functions

• C-code startup and trap table updates,

• MCAL adaptation,

• Integration of the SP update library if SP update is required.

3.5.6 FBL: Memory Layout Adaptation

To integrate the FBL in your application the first step to do is decide how to set up your

memory regions. This is done using the configuration tool as described in Section 3.5.2. The

allowed range for your target is described in you RTA-FBL GM Target Guide. An example of

a typical memory layout is depicted in Figure 26.

40 | RTA-FBL GM Port

ETAS RTA-FBL | User Guide

Figure 26 - Sample Memory Layout

3.5.7 FBL: User Functions

You will find all user functions that you need to complete in the generated file FBL_Por-

tUserCode.c within the \Ports\GM\INFRA\Port\src folder of your generated FBL instance.

Sleep

The function Fbl_Port_Sleep is called by the bootloader when no UDS messages are

received after 20 seconds. The integrator should modify this code to put the ECU to sleep.

The integrator must also implement the wakeup logic that will result in the ECU restarting

from reset.

Watchdog

The FBL does not implement any watchdog functionality. As an example, for the integra-

tor, the call Fbl_Port_WatchDogInitialise is called from Os_Start and the

user should place the code that initializes the watchdog in this function. The function

Fbl_Port_WatchDogRefresh must then be called to pet the watchdog from within a

cyclic OS function. In the provided OS, this is called every 100ms from within the 20ms

task (OsTask_20ms), but the integrator can call Fbl_Port_WatchDogRefresh at

whatever rate is deemed suitable.

Hook Functions

On some targets, the follow hook functions are provided. See your GM target guide for

further information on whether your target supports these hook functions:

• Fbl_Port_TargetWritePreHook: This function is called before the start of

writing to flash

• Fbl_Port_TargetWritePostHook: This function is called after the end of

writing to flash

• Fbl_Port_TargetErasePreHook: This function is called before the start of

flash erase

41 | RTA-FBL GM Port

ETAS RTA-FBL | User Guide

• Fbl_Port_TargetErasePostHook: This function is called after the end of

flash erase

• Fbl_Port_CheckSignaturePreHook: This function is called before the

start of signature validation

• Fbl_Port_CheckSignaturePostHook: This function is called after the

end of signature validation

• Fbl_Port_CheckMessageDigestPreHook: This function is called before

the start of signature validation

• Fbl_Port_CheckMessageDigestPostHook: This function is called after

the end of signature validation

• Fbl_Port_PreHsmUpdateHook: This function is called before the start of

HSM update in the Mini FBL

• Fbl_Port_PostHsmUpdateHook: This function is called after the end of

HSM update in the Mini FBL

• Fbl_Port_ExcuteHsmUpdateHook: This function is called in the Mini FBL

while waiting for completion of HSM update

Get Programming Conditional Flags – Status User Bits

The function Fbl_Port_GetProgrammingConditionalFlagsSta-

tusUserBits is called by the bootloader when servicing the routing control 0xFF01

(Check Programming Dependencies). It needs to return a value for the third byte (Byte 2)

when servicing this routine control. The integrator must set bits 3-7 are as per the GM

specification [2]. Note that bits 0-2 will be cleared if set.

Get ECU Type and Current Programming Capability

The function Fbl_Port_GetECUTypeAndCurrentProgrammingCapability is

called by the bootloader when servicing the routing control 0xFF01 (Check Programming

Dependencies). It needs to return a value for the fourth byte (Byte 3) when servicing this

routine control. The default value to accept programming conditions is 0x7 since this sets

bits 0-2 to the default values as per the GM specification [2].

Get Additional Programming Conditional Flags Status

The function Fbl_Port_GetAdditionalProgrammingCondition-

alFlagsStatus is called by the bootloader when servicing the routing control 0xFF01

(Check Programming Dependencies). It needs to return a value for the fifth byte (Byte 4)

when servicing this routine control.

Get the ECU Id

The function Fbl_Port_GetEcuIdUserHook is called by the bootloader at initializa-

tion when the FBL generator parameter FblEcuIdSupport is set to ECUID_USER_SUPPORT.

You need to return the 16-byte value of the ECU Id depending on how this is provisioned

for your ECU.

3.5.8 FBL: BSW adaptation

The BSW modules needed by RTA-FBL and generated in the generated BSW project are

listed in Table 5. This list is the minimum setup needed for the basic FBL. The only exception

42 | RTA-FBL GM Port

ETAS RTA-FBL | User Guide

is that the values of STmin in [2] is specified as a range between 0 and 100 microseconds.

This value has been set to 0 in the default generated BSW configuration. However, you may

change this value in the BSW configuration if in testing you realize your setup is resulting in

lost CAN frames. You may need to do this if you set larger values than 100 microseconds for

the FBL configuration parameters FblSecurityTimeWindow and FblDecompressTimeWin-

dow. System testing of CAN targets is typically done with an STmin value set to 32 micro-

seconds.

If changes are necessary in order to fulfill non-standard bootloader integration require-

ments (i.e. requirements not covered in [1], [2] and [3]), then it is strongly recommend that

you first contact ETAS’ support before making these changes. The integrator must always

test the complete FBL after making any modifications to the generated BSW project.

Table 5: BSW modules list

BSW Module(s) Notes

Dcm The diagnostic communication module.

MemIf; Fee; Rba_FeeFs1, NvM Memory stack modules for the NVM.

CanIf; CanSM; CanTp; CanTp_Precom-
pile, ComM; ComStack; PduR

Can communication stack modules. (*)

EthIf; EthSM; EthTrcv; SoAd; TcpIp;
PduR

Ethernet communication stack modules. (*)

Crc Uses for CRC calculation in NvM.

Rba_ArxmlGen; Rba_DiagLib; Standard;
BswM; BswM_Precompile_PB_Variant

Additional modules required for build.

(*) They are mutually exclusive and depend on the network the target supports

3.5.9 FBL: OS adaptation

The OS provided with this port is based on a simple cyclic scheduler. This OS does not sup-

port interrupts and is non-preemptive. If you need to integrate additional code to the

bootloader, you will likely need to adapt this OS. This might involve adding co-routines to

the existing tasks or adding new tasks. Adding a new co-routine simply requires adding the

function call with the relevant task body in "Fbl/INFRA/Os/src/Os_Tasks.c". If you need to

add a new task with a different frequency then follow these steps:

1. Add the task to the task list in "Fbl/INFRA/Os/inc/Os_Tasks.h"

2. Add the task to Os_TaskTable in Os_SchTbl in "Fbl/INFRA/Os/inc/Os_SchTbl.c"

3. Create the task body in "Fbl/INFRA/Os/inc/Os_Tasks.c"

The OS is driven from a timer that is provided by the target through the macro GET_SYS-

TEM_TIMER. Your target will also export the #define OS_TICK_TH that is used as the

tick counter for the OS. The rate at which this is ticked is target-dependent and can usually

be set by the integrator. Please review your GM FBL Target Guide for more information on

how to set this rate.

IMPORTANT: The integrator is responsible to ensure that any modifications made to the

OS are tested to ensure that the FBL continues to operate as expected. In particular, mov-

ing the existing co-routines into a different order or within other tasks will likely result in

incorrect behaviour.

43 | RTA-FBL GM Port

ETAS RTA-FBL | User Guide

Finally, the #define FBL_MEASURE_TASKS can be set in Os_Tasks.h to measure the

amount of time spent tasks during the execution of a download sequence. This can help

you to benchmark the amount of time spent in each co-routine. Note that this feature is

should only be used for development and is only supported when the bootloader is en-

tered directly (that is, not from a programming session in the application). The data col-

lected for each routine is described in Table 6. The routines that are captured are:

• Can_MainFunction_Write (for CAN targets only)

• Can_MainFunction_Read (for CAN targets only)

• Can_MainFunction_BusOff (for CAN targets only)

• CanTp_MainFunction (for CAN targets only)

• CanSM_MainFunction (for CAN targets only)

• Eth_MainFunction (for Ethernet targets only)

• EthIf_MainFunctionRx_EthIfPhysCtrlRxMainFunctionPriori-

tyProcessing (for Ethernet targets only)

• EthIf_MainFunctionState (for Ethernet targets only)

• EthSM_MainFunction (for Ethernet targets only)

• SoAd_MainFunction (for Ethernet targets only)

• EthTrcv_MainFunction (for Ethernet targets only)

• NvM_MainFunction

• Fee_MainFunction

• Fls_MainFunction

• BLSM_MainFunction

• Fbl_Port_SecurityMainFunction

• Fbl_Port_MainFunction

• Dcm_MainFunction

• Fbl_ProgM_MainFunction

• Fbl_BootM_MainFunction

• Fbl_DataM_MainFunction

Table 6: Timing benchmark variables

Variable Description

timing_total_ms<routine> The total amount of time in milliseconds spent in

routine <routine>

timing_low_10us<routine> The lowest amount of time in tens of microseconds

spent in routine <routine>

timing_high_10us<rou-

tine>
The highest amount of time in tens of microseconds

spent in routine <routine>

timing_average_10us<rou-

tine>
The average amount of time in tens of microsec-

onds spent in routine <routine>

iterations_<routine> The number of times that the routine <routine> ex-

ecuted

44 | RTA-FBL GM Port

ETAS RTA-FBL | User Guide

3.5.10 FBL: BLSM adaptation

The BLSM is used primarily to initialize the BSW and MCAL modules and to start the boot-

loader. An integrator may need to adapt the BLSM to make the initialization calls for addi-

tional modules. This will involve modifying one or more of the Fbl_Port_BLSM_DriverInit

functions in "Fbl/INFRA/BLSM/src/BLSM_CallOuts.c". It is strongly recommended that

while additional init functions can be added, the existing init functions calls are not moved

from their current location within the Fbl_Port_BLSM_DriverInit calls.

In choosing where to add your init functions, note that the NvM is only set up at the end

of Fbl_Port_BLSM_DriverInitOne. Therefore, if your integrated code requires the NVM,

you should add it in Fbl_Port_BLSM_DriverInitTwo.

IMPORTANT: The integrator is responsible to ensure that any modifications made to the

BLSM are tested to ensure that the FBL continues to operate as expected.

3.5.11 FBL: C-code startup and trap table updates (optional)

The startup code and trap code used for your target is described in your RTA-FBL GM Tar-

get Guide. The integrator may change these if required following the target guidelines, but

is then responsible for testing of the complete FBL.

3.5.12 FBL: MCAL adaptation

The MCAL modules needed by RTA-FBL for all targets are listed in Figure 3. The list is the

minimum setup needed for the basic FBL functionalities (i.e. communication, flashing, etc.).

The list does not include customer specific adaptations like external watchdog, external

transceivers, external EEPROM, etc. See your RTA-FBL GM Target Guide for further infor-

mation on MCAL modifications for your target.

Table 7: MCAL modules list

MCAL Module Notes

Can CAN driver (*)

Eth Ethernet driver (*)

Flash Driver Driver for FLASH erase and programming. This includes
the handling of PFLASH and DFLASH, so in some
MCALs these drivers are implemented by two different
modules.

Mcu Provides core functionality such as clock handling, mcu
reset, etc.

Port Provides interface to port pin peripheral.

(*) They are mutually exclusive and depend on the network the target supports

3.5.13 FBL: Integrating an External CAN Transceiver into an RTA-FBL Project

Earlier sections provided an explanation of how the BSW (Section 3.5.8), OS (Section 3.5.9)

BLSM (Section 3.5.10) and MCAL (Section 3.5.12) could be adapted. This section provides a

brief overview of how a Can Transceiver can be integrated into the FBL by adapting these

modules. It serves as an example of how to integrate a Can Transceiver that has already

been integrated into an application that uses a newer version of RTA-BSW (e.g., RTA-BSW

6.1) than is supported by the bootloader (RTA-BSW 5.1). Therefore, the integration

45 | RTA-FBL GM Port

ETAS RTA-FBL | User Guide

engineering work should be limited to transferring the existing working transceiver logic in

the application to the bootloader.

Note that, although this example assumes that the transceiver is supported by the version

of RTA-BSW used in the application, it is also possible to integrate 3rd party transceivers

that are not supported in RTA-BSW. This would have to be done in the same way that you

would have had to integrate the transceiver in the application. As is the case with the inte-

gration of all third-party code, testing of the entire integrated system should be carried

out.

Also, note that any new code integrated in the following steps should be added to the

build system.

BSW Configuration

To integrate a CAN Transceiver into an RTA-FBL project the following BSW configuration

should be added to the FBL project:

• CanTrcv,

• CanIf (Configuration already exists in FBL, so it is only necessary to add configuration
that references the CanTrcv module),

• CanSM (Configuration already exists in FBL, so it is only necessary to add configura-
tion that references the CAN Transceiver),

• Stubbed MCAL module for CanTrcv references (Spi or Dio; RTA-BSW will only use this
as a reference).

The RTA-FBL Generator includes RTA-BSW 5.1. If a CAN Transceiver is not supported in

RTA-BSW 5.1, but it is in a subsequent version of the tool (e.g. RTA-BSW 6.1), then it is

possible to integrate a newer version of the CanTrcv module using a newer version of RTA-

BSW. This would require the following steps:

1. Generate the CanTrcv module using the newer version of RTA-BSW.

2. Copy over CanTrcv and MCAL (Spi or Dio) config as well as the parts of CanIf and
CanSM that reference the CanTrcv.

3. Copy over the CanTrcv paramdef from the newer RTA-BSW project.

4. Regenerate the original RTA-BSW project to reflect the changes in configuration to
CanIf and CanSM. Note that CanTrcv and Rba_Trcv generation should be turned off
during this step to prevent an error being thrown by RTA-BSW.

5. Copy over the generated CanTrcv code from the newer RTA-BSW.

MCAL Configuration

The Spi or Dio configuration required to communicate with the CanTrcv should be added

to the MCAL project and the code regenerated. The names of the configuration items

should match the names in the stubbed MCAL module added to the BSW project.

Integration Code in the OS and BLSM

BSW initialization functions should be added to the Fbl_Port_BLSM_DriverInit functions in

BLSM_Callouts.c. The CAN Transceiver initialization function should be called after the

MCAL initialization function (Spi or Dio) and before the initialization function for CanIf.

Certain CAN transceivers may require a mainfunction to be executed periodically. This

46 | RTA-FBL GM Port

ETAS RTA-FBL | User Guide

should be added to one of the tasks in Os_Tasks.c. The steps required in this section are

explained in more detail in sections 3.5.9 and 3.5.10.

Wakeup Interrupts

Even though interrupts are not supported by the cyclic OS provided in RTA-FBL, wakeup

interrupts can still be added to the interrupt table as the bootloader OS scheduler will not

be running until wakeup is complete. The process of implementing the interrupts is target

and transceiver specific and is the responsibility of the integrator.

3.5.14 Application Software: NvM layout adaptation

Adaptation of the NvM is usually required as the application would rarely already incorpo-

rate the FBL NvM layout. This is because the NvM is the interaction mechanism between

application and FBL. In particular, the application writes a flag in NvM and then resets in

order to allow the FBL to handle the reprogramming request and to know that this request

has been issued. Moreover, the FBL could have other internal NvM blocks that need to be

copied in case of a page swap by the application. Therefore, the correct integration of NvM

layout comprise the complete copy of FBL NvM blocks on the application NvM layout. In

order for the layout to be consistent, the Fee persistent IDs of the blocks must match be-

tween the application and FBL. Table 8 shows the NvM blocks and their Ids that must be

also configured in the application. Note that if you already are using the Persistent IDs gen-

erated by fblgen in your application and do want to change these, then you can instead

change these values in the FBL instance’s BSW configuration as long as you keep them con-

sistent with the values in the Application.

Table 8: Fbl NvM data

Persistent

Id*
Name

Size in

Bytes
Description

2 Reprogramming Re-

quest Flag

4 The reprogramming request flag that is set by

the application when it enters the Program-

ming session. The bootloader clears this flag

on startup.

3 Signature Bypass

Ticket

822 The SBA ticket is set by the application and

read by the bootloader to implement bypass

features as described in [3].

4 Key NBID 2 Used internally by the FBL to guarantee con-

sistency of the Key NBID.

5 Ecu Id 16 The ECU Id is written by the application or dur-

ing ECU provisioning and read as part of the

response to DiD 0xF0F3. Note that this NvM

value is always present, even if FblEcuIdSup-

port is set to ECUID_USER_SUPPORT.

6 App NBID 2 Used internally by the FBL to guarantee con-

sistency of the App NBID.

7 Programming Condi-

tions

31 Used to save programming conditions that are

read by the bootloader on startup. See 3.5.15

47 | RTA-FBL GM Port

ETAS RTA-FBL | User Guide

for more information.

8 GM End Model Part

Number

4 The GM End Model Part Number is written by

the application and read as part of the re-

sponse to DiD 0xF1CB.

9 GM End Model Part

Number Alpha Code

2 The GM End Model Part Number Alpha Code

is written by the application and read as part

of the response to DiD 0xF1DB.

10 Diagnostic Address 1 The diagnostic address of the ECU. This value

is not written by the bootloader but can be set

up on ECU commissioning. It is only used if the

bootloader is generated with Diagnosti-

cAddressIsStatic not set.

*Note, if the target supports jumping to boot in Ram and FblReprogrammingRequestFlag is

true, then the persistent Id columns are decremented by 1 and the Reprogramming Request

Flag NvM block is excluded.

3.5.15 Application Software: Boot Jump Handling

To reprogram the ECU when an application is valid and running, it is necessary for the ap-

plication to signal to the bootloader that reprogramming is required after the next reset.

This is done by setting the reprogramming request flag (id 2 in Table 8) NVM and then en-

tering the programming session. For some targets, the jump to boot can be done via a RAM

flag. In this case, the NvM block is not configured. This sequence is show in Figure 27.

The programming conditions (id 7 in Table 8) must also be set. The data bytes are used to

build the contents of a BSW structure of type Dcm_ProgConditionsType. They must

be serialized as shown in Table 9 in order to make sure that there are no dependencies on

the structure of the data due to the compiler, compiler options, or the BSW version. You

should be able to get the values needed to create data by using the contents of the pro-

gramming conditions sent as an input parameter to the function Dcm_SetProgCondi-

tions called from the Dcm when the Programming Session is entered in the application.

Note that the Tester Source address (TesterSourceAddr) is set by the Dcm only if

DcmDslProtocolRxTesterSourceAddr is correctly configured for each DcmDslConnections in

BSW configuration.

Finally, note that it is important that the application check that the writes to NvM data are

persisted (and not just present in the NvM’s mirror RAM) before the reset takes place.

48 | RTA-FBL GM Port

ETAS RTA-FBL | User Guide

Figure 27: Handling of jump logic

Table 9: Programming conditions data to be set in NvM

Name

First

byte

index

Size in

Bytes
Description

ProtocolId 0 1 Active Protocol ID – Should be set to 0x03 to indi-

cate UDS

Sid 1 1 Active Service Identifier – Should be set to 80 to in-

dicate the response to service 0x10 (session con-

trol)

SubFncId 2 1 SubFncId – Should be set to 2 to indicate request

to enter the programming session

StoreType 3 1 Storing Type used for Storing the information –

Should be set to 3

SessionLevel 4 1 Active Session – Should be set to 3 to indicate the

extended session

SecurityLevel 5 1 Active Security – Should be set to 1 to indicate the

ECU is unlocked

ReqResLen 6 1 Response Length – Should be set to 6 to indicate

the response length should be made of 6 bytes

NumWaitPend 7 1 Number of waitpends triggered – Should be set to

1

ReqResBuf 8 8 Request / Response buffer – Should be set to the

49 | RTA-FBL GM Port

ETAS RTA-FBL | User Guide

response parameters for the diagnostic session

change; the first four bytes are required here as the

response bytes to this UDS request.

TesterSourceAddr 16 2 Tester diagnostic address – Should be set to a value

between 0xF1 and 0xF6

ElapsedTime 18 4 Total elapsed time – This should be retained from

the Dcm provided value when Dcm_SetProg-

Conditions is called.

ReprogramingRequest 22 1 Reprograming of ECU requested – This value

should be set to 1.

ApplUpdated 23 1 Application has to be updated or not – This value is

ignored as the programming request flag uses its

own NvM data or making a programming request

as shown in Table 8.

ResponseRequired 24 1 Response has to be sent by flashloader or applica-

tion – This should be set to 1.

freeForProjectUse 25 6 Not used.

3.5.16 Implementing a back door

The GM specification does not provide a back-door mechanism to force the ECU to enter

boot mode when the application needs to be reprogrammed in situations where the appli-

cation is unable to successfully enter the programming session. This could happen if there

is a bug in the jump logic of application or if the start address of the application is not at

the address jumped to by the bootloader. If the integrator wishes to implement such a

backdoor mechanism, then this should be done by setting the reprogramming flag in NvM

(persistent Id 2) to 0xAAFF55AA and causing a reset. This should be done in

Fbl_Port_BLSM_DriverInitOne in the generated file BLSM_Callouts.c before the

function Fbl_BootM_CheckEcuState is called. This value can also be specified using

the define FBL_BOOTM_REPROGRAMMING_REQUEST_FLAG_STATE_ON in BootM.h.

3.5.17 Security Peripheral Update

Some GM target ports support update of the security peripheral (HSM) as per [3]. To ena-

ble this feature on these targets and generate the FBL instance using FblSpUpdateSup-

ported set to SP_UPDATE_ON, you will need to add a number of files that would be deliv-

ered separately from the installer RTA-FBL GM Port installer. Please refer to your target

guide for information on where to copy these files to.

3.6 Preparing an application/calibration for download

The FBL expects binary files sent to ECU to be programmed to follow the format described

in [3]. Therefore, the user is expected to prepare the binary using the required envelopes,

header data and info section. If a binary is to be compressed using the supported ARLE

mechanism, then this must be done as described in [3]. The bootloader will reject any in-

correctly formed binary and return the relevant NRC and set the PEC as described in [3].

50 | RTA-FBL GM Port

ETAS RTA-FBL | User Guide

In preparing the application header, note that no Alignment Padding is required in the Ap-

plication Signed Header. Therefore, the bootloader expects that the application info section

will follow immediately after the header in the downloaded binary.

3.7 Boot Update

Boot update is supported for some targets. A separate application (the “boot updater”) is

created that you would download to your ECU to replace your application. This application

has one calibration module that contains the binary of the new bootloader.

3.7.1 The bootmanager and the boot update process

Figure 28 shows the process of boot update. Targets that support boot update will always

have a bootmanager. On reset, the bootmanager will check if the FBL is valid and jump to

the bootloader if it is valid. If the bootloader is not valid, then the bootmanager will jump

to the application. This is because if the bootloader is invalid, then this would signify the

boot updater application must have failed in a previous update attempt and will need to

run again. Note that the bootmanager is the only non-replaceable software and is used to

ensure boot update is failure safe. It will hold a refence to the start address of the boot-

loader (see parameter FblBootloaderStartAddress in Section 3.5.2) that cannot be

changed across bootloader updates.

Note that boot update will only be allowed by GM with an SBAT preset as GM will not sign

either of the 2 modules.

Figure 28: The boot update process

3.7.2 Preparing boot update modules

To update the bootloader, you will need to prepare two binaries: the boot updater binary

and the new bootloader binary. These two binaries can be signed using the same tooling

that you use to create your self-signed binaries for testing. No special tooling is required to

create the boot updater application module and bootloader calibration module. They are

treated by the bootloader in the same way as ordinary applications and calibration modules

and must therefore have valid signed headers and info sections.

Note that the bootloader you generate will always have a bootmanager for targets that

support this feature. The bootmanager should not be placed in the calibration module bi-

nary since it should never be flashed by the boot updater. Therefore, when creating the

calibration module with the new bootloader, ensure that only the data that is to be flashed

51 | RTA-FBL GM Port

ETAS RTA-FBL | User Guide

to the regions defined by the configuration parameter FblBootloaderSpace is contained in

the module.

52 | Contact Information

ETAS RTA-FBL | User Guide

4 Contact Information

Technical Support

For details of your local sales office as well as your local technical support team and prod-

uct hotlines, take a look at the website: www.etas.com/hotlines

ETAS Headquarters

ETAS GmbH

Borsigstraße 24 Phone: +49 711 3423-0

70469 Stuttgart Fax: +49 711 3423-2106

Germany Internet: www.etas.com

https://www.etas.services/hotlines
https://www.etas.services/

53 | Figures

ETAS RTA-FBL | User Guide

Figures

Figure 1: High level flashing process .. 8

Figure 2: Boot loading flowchart .. 9

Figure 3: The process of generating an RTA-FBL instance .. 12

Figure 4: General architecture of an RTA-FBL instance .. 13

Figure 5: Welcome window .. 15

Figure 6: ISOLAR-AB version selection.. 16

Figure 7: Installation progress .. 16

Figure 8: Installed Components .. 17

Figure 9. License Manager (Installed Licenses) .. 18

Figure 10. Add a License ... 19

Figure 11. Add a License File. ... 19

Figure 12: GM architecture of an RTA-FBL instance ... 22

Figure 13: RTA-CAR project creation .. 23

Figure 14: RTA-CAR project .. 23

Figure 15: New RTA-FBL Project ... 24

Figure 16: Select Target .. 24

Figure 17: Console window upon successful project creation ... 25

Figure 18: Accessing the FBL configuration parameters .. 25

Figure 19: Edit Configuration Parameters .. 26

Figure 20: Open RTA Code Generator Dialog ... 26

Figure 21: RTA Code Generator .. 27

Figure 22: Console Window on Successful Generation .. 28

Figure 23: RTA-BSW CodeGen tab .. 28

Figure 24: Generate RTA-FBL .. 29

Figure 25: Successful generation .. 29

Figure 26 - Sample Memory Layout ... 40

Figure 27: Handling of jump logic ... 48

Figure 28: The boot update process ... 50

54 | Revision History

ETAS RTA-FBL | User Guide

Revision History

Version Author Date Change (Why, What)

1.0 Andrew Borg 22/06/2020 First version.

1.1.0 Andrew Borg 09/11/2020 Updated for RTA-CAR inte-
gration.

1.2.0 Andrew Borg 02/08/2021 Updated for RTA-FBL GM
V1.2. This update includes
support for Ethernet and
SP (HSM) update.

1.3.0 RC 1 Andrew Borg 21/09/2022 Typo fixes; added section
on transceiver integration;
added information on boot
updater

1.3.0 Jacopo Filippi 28/10/2022 Update version and
screenshot

1.3.1 Andrew Borg,

Alessandro Sassone

30/06/2023 Minor updates and conver-
sion to new template.

Added Licensing Section.

1.3.2 Andrew Borg

23/11/2023 Minor updates for release
with bug fixes. Added in-
formation for jump-to-boot
in RAM for supported tar-
gets.

