
Reality check: five
approaches to the
software-defined vehicle
from the past decade

Ph
ot

o
by

 K
ea

rn
ey

 a
lu

m
ni

Forward-thinking automakers can
thrive in the SDV market by not
only learning from the past but also
setting their sights on the future.
The software-defined vehicle (SDV) has been around
for the past 10 years. And while software natives and
electric vehicle players may be farther along than
others, now is a good time for all original equipment
manufacturers (OEMs) to see what they can learn with
a little hindsight.

In this article, we explore five common approaches to
the SDV, examine the successes and challenges, and
look at the current state of development and
implementation. The insights offered here come
through a collaboration between the global consulting
firm Kearney and ETAS, a leading automotive software
supplier. This article provides comprehensive
solutions for organizations looking to succeed in the
SDV market, from strategy to development and testing
systems across vehicle domains.

Now is a good
time for all
original equipment
manufacturers
(OEMs) to see what
they can learn with
a little hindsight.

1Reality check: five approaches to the software-defined vehicle from the past decade

Approach 1: decoupling hardware
and software

Why did this approach
come about?
For decades, software was an addition to hardware.
Traditionally, OEMs single-sourced electronic control
units (ECUs) with the software integrated. Many of
these ECUs were hard-wired in decentralized
electrical/electronic architecture. Features were
released on old, disconnected vehicle generations,
and the lack of interoperability and high complexity
led to long development cycles and higher operational
expenditures. In this world of planning and tightly
coupled software and hardware development life
cycles, the OEM would source hardware and software
for the new vehicle as a bundle. All the required
software elements would be developed up to the start
of production. As a result, integration became
incredibly difficult because the vehicle’s functionality
would depend on several suppliers.

When challenger OEMs arrived in the SDV market,
they caused a paradigm shift by focusing on
innovation through software instead of hardware.
Their decoupled software and hardware approach
paved the way for continuous development and
deployment. OEMs used to plan for at least three
years to develop software in parallel with hardware.
Now, the process was faster and more iterative up to
the start of production and beyond, and it included
the entire vehicle life cycle. Software modules from
multiple suppliers were seamlessly integrated, and
over-the-air updates enabled ongoing maintenance
and created new revenue streams from innovating
customer-facing features. As the industry progresses,
the sourcing of hardware and software functions will
be decoupled in the sense of not only two separate
offers but also the life cycle. Functions will be
continuously developed and added to a series of
vehicles, not just for one specific vehicle at a time
(see figure 1 on page 3).

As the industry
progresses, the
sourcing of
hardware and
software functions
will be decoupled.

2Reality check: five approaches to the software-defined vehicle from the past decade

Notes: SW is software. HW is hardware. SOP is start of production.

Source: Kearney analysis

Figure 1
Approach 1: decouple hardware and software

The next generation of E/E architectures enables continuous development and deployment of software updates
over the air.

Old world: SW and HW life cycle tightly coupled New world: SW life cycle decoupled from HW life cycle

SW Sourcing Dev SW Sourcing Continuous development
and deployment

HW Sourcing Dev SOP Series

SW Sourcing Dev

HW Sourcing Dev SOP Series

SW Sourcing Dev

HW Sourcing Dev SOP Series HW Sourcing Dev SOP Series

HW Sourcing Dev SOP Series

HW Sourcing Dev SOP Series

No reuse of SW
V1.0 V2.0

V2.0 V2.1 V3.0

V2.0 V3.0

No reuse of SW

What worked?
This shift caused leaders from across organizational
functions to recognize the need to decouple software
from hardware as much as possible. A series of M&A
transactions helped build the required software
capabilities or incorporate products to integrate with
the platform. The portability of functions moved into
the market with tier 1 suppliers producing software
in modules. Integration of these modules from one
organization into an ECU from another became
standard. Software-native OEMs stuck to agile
principles of developing an MVP platform and
continuously enhancing the feature stack to
manage complexity.

What didn’t work?
Many traditional OEMs took a big-bang approach,
forcing the full software feature set from day one.
Starting with an MVP is essential for agile
development, but in this instance, organizations tried
to leapfrog it by throwing money at the work and
developing a full-function scope. Because it’s normal
to hit a software boundary when first developing
hardware, it became common to see hardware under
specification because of risk-averse finance
departments. Handling legacy topics is also always an
issue. The intention is to start fresh, but over time,
legacy features begin to creep in. And once one
legacy feature is in play, it could be connected to
many others—starting a chain of interdependency.
Lastly, many OEMs tried to do everything at once
instead of focusing on a certain domain. Few
effectively established the fundamentals while
focusing on a limited set of differentiating features
to pursue a manageable development scope.

3Reality check: five approaches to the software-defined vehicle from the past decade

Approach 2: establishing a separate
software unit

Why did this approach
come about?
In a word, talent. Successful software development
relies on creating a space for people with the right
mindset and skills to come together and develop free
from legacy. Creating such a culture is essential, as
reflected in the ongoing war for talent with OEMs
competing against the biggest names in tech.
Organizations that don’t have a favorable software
culture simply won’t be considered by the best and
most in-demand talent, who are drawn by not only
bigger salaries, but also better working conditions
and more exciting projects.

Traditional OEMs historically grew their R&D
departments with a hardware-first approach,
meaning teams were great at producing cars in a
waterfall approach with solid planning and execution
in a two- or three-month cycle. However, this also
meant they lacked the skills to rethink vehicle
architectures for the SDV and struggled with a lack of
specialist capabilities in areas such as telematics,
cloud back end, and artificial intelligence. Software
requires a new way of thinking. Hardware focuses on
specification because building costs money, but
software is the reverse: you can’t specify because it’s
impossible to predict every dependency and state, so
the focus is on integration. Software-first
organizations can implement more agile methods,
measure the result, and make refinements at faster
intervals (see figure 2 on page 5).

Software-first
organizations can
implement more
agile methods,
measure the
result, and make
refinements at
faster intervals.

4Reality check: five approaches to the software-defined vehicle from the past decade

Notes: ADAS is advanced driver assistance system. IoT is Internet of Things. OS is operating system.

Source: Kearney Automotive Software Benchmark Index

Figure 2
Approach 2: separate software unit

The global automotive software footprint showing the total size and focus domains of countries

Total size of software footprint
of benchmarked companies:

Low High

Infotainment
ADAS
Body and comfort
Driving and charging
Cloud and IoT
Base OS

What worked?
This approach allowed organizations to grow and
develop their software culture with limited
interference. Inside the unit, it enabled more cross-
functional thinking. OEMs stopped focusing too
much on specific domains with sporadic
communication between separate teams, causing
management overhead. Instead, they could build new
features by drawing from the right pool of talent on
day one. Also from the outset, the focus on
integration ensured the frequent and smooth
synchronization of hardware and software.

What didn’t work?
Many OEMs structured software development in a
way that focused exclusively on their vehicle lines and
launches, and they put the actual software second.
Too often, existing R&D and corporate structures
were the template for the software unit, and hardware
talent shifted to work on software. Far from growing a
software culture, the lingering presence of the parent
organization slowed decision-making and hampered
innovation. Teams also grew too big and too fast with
a low make–share ratio. Some even numbered around
6,000 people. In short, the “now we change
everything approach” was too ambitious for a
one-step transformation and led to rejection by the
surrounding organization.

5Reality check: five approaches to the software-defined vehicle from the past decade

Approach 3: developing the full
software stack

Why did this approach
come about?
Many OEMs have a desire to develop the full software
stack in terms of domains, such as advanced driver
assistance systems (ADAS) and in-vehicle
infotainment, as well as the ECU tech stack (the
operating system, middleware, and applications).
Over the past few years, the race has been on to
increase the make ratio across everything from the
hardware to the firmware, middleware, and
applications. Organizations are attracted by the idea
of reducing the dependency and effort spent on
integrating software suppliers and gaining complete
strategic control with the in-vehicle infotainment
domain, drawing many similarities to the smartphone
ecosystem. To put the scale of this ambition in
perspective, even the leading SDV players develop
only the application and middleware layers while
adapting Linux firmware.

What worked?
A positive by-product of this approach was a new
focus on the in-house development of customer-
facing and differentiating software components.
OEMs began to prioritize areas where the customer’s
good impression of the user experience would
benefit the manufacturer, such as a touchscreen
navigation system or infotainment features. Beneficial
partnerships and open-source communities emerged
for platform development, such as Automotive Grade
Linux, Android Automotive, and the newly founded
Eclipse SDV. In combination with the platform and
middleware open-source communities, multiple open
standardization efforts are focusing on other
challenges, such as the Connected Vehicle Systems
Alliance (COVESA) for data and service and the
Scalable Open Architecture for Embedded Edge
(SOAFEE) project for defining a cloud-native
architecture and behavior all the way down to the
chipset level (see figure 3 on page 7).

What didn’t work?
There were issues right from the definition phase,
with various interpretations of what developing the
full stack meant. OEM-specific *.OS projects ranged
from pure application to middleware and base OS on
up to the full ecosystems around the car. The overall
stretch in resources, time, budget, and capabilities
was overwhelming, with OEMs trying to support the
demands of brands and vehicle platforms that might
have different ways of categorizing the same data
point or service API. This is the exact opposite of the
desired uniform model in which a single definition or
catalog streamlines data across brands and increases
the reuse of code that interacts with vehicle signals
and services.

6Reality check: five approaches to the software-defined vehicle from the past decade

Notes: OEM is original equipment manufacturer. COP is conformity of production. ADAS is advanced driver assistance system. IoT is Internet of Things. HMI is human
machine interface. AC is air conditioning. ACC is adaptive cruise control. OTA is over the air. OS is operating system. IP is intellectual property.

Source: Kearney analysis

Figure 3
Approach 3: Developing the full software stack

Body and comfort

A
pp

lic
at

io
ns

C
or

e
se

rv
ic

es
Pl

at
fo

rm

HMI
ADAS services

(e.g. ACC)
Vehicle motion

manager
Connect
module

Web-HMIs/
app HMIs

Customer-
centric service
business logic

Light (interior
and exterior)

Fleet module

ADAS
Driving and

charging
Infotainment Cloud and IoT

Cockpit
functions

Highway pilot
OTA

management

Connected
services (interior

and exterior)

AC and
temperature

Engine control Routing module

Instrument
cluster

Parking
assistant

Services
interfaces

Lock/unlock Steering control Remote module

Customer data
management

Mobile
integration

CybersecurityComfort Brake control
Predictive
route data

Secure module

IVI/safety OS
Middleware

(classic
AUTOSAR)

Middleware
(adaptive

AUTOSAR)
Infrastructure

Security

Safety

Ethernet

Diagnosis

Processes

Test and integration

Digital business
enablement

management

Wake up
monitor

Passive safety Gear control
Motion control/

collision
prevention

Network power
management

Customer
experience

management
Navigation

Energy
management/

charging

Analytics and
data collection

App store

Mobility enabler
services

Media
Active chassis/
damper control

Object
detection/

sensor fusion
Voice assistant

Data services
Mapping and
localization

Off-car core
services

On-car core services

Buy Secure know-how/IP by M&A Make

7Reality check: five approaches to the software-defined vehicle from the past decade

Approach 4: agile as the software holy grail

Why did this approach
come about?
We are now at the tail end of a period in SDV history
that saw everyone using agile delivery methods for
everything. In much the same way, OEMs were using
a waterfall approach in the form of V-model cycles for
all hardware development. With the prioritization on
software development and its lack of need for
physical building, the faster innovation cycles and
flexibility were more appropriately matched to agile
delivery. OEMs saw the benefits of agile as the proven
method of the high-tech software industry and
perceived it to be the best, often taking a blanket
approach (see figure 4 on page 9).

What worked?
Adapting agile for the right domains, such as
application and back-end development, can have a
big impact. When functional teams are responsible
for the end-to-end software value chain from design
to development and integration across domains, they
are more likely to adopt the right mindset across
teams. The decision of what delivery model to use
depends on the specific set of circumstances, such
as when opting for a lean approach rather than a
scaled agile framework (SAFe). In a two-speed model,
with agile used for cloud and in-vehicle features
and the traditional V-model used for the base
operating system, electronics and mechanics
can sustain velocity throughout feature and
platform development.

What didn’t work?
It doesn’t work when agile is used for everything, all
the way from applications and platforms to business
functions such as purchasing and marketing. Short-
term reskilling bootcamps reinforce the mistaken
view that agile can simply be adopted without a new
long-term mindset. There have been too many
accounts of system architects wholly responsible for
the design without the time to oversee and guide the
delivery. A SAFe approach can be the worst of both
worlds, with agile acting as the shiny cover hiding the
core of traditional waterfall management. There’s also
the issue of finding the right synchronization between
fast-cycling software features, mid-pace cycling
of the base operating system, and the slow-cycling
of hardware.

8Reality check: five approaches to the software-defined vehicle from the past decade

Notes: ECU is electronic control unit. OS is operating system. CI/CD is continuous integration/continuous development. SOP is start of production.
PMO is project management office.

Source: Kearney analysis

Figure 4
Approach 4: agile as holy grail

The digital and fast product creation must provide a "two-speed" delivery model
to sustain velocity.

On- and off-board stack

So
ft

w
ar

e
H

ar
dw

ar
e

Cloud features

Back-end based
supporting features

Feature development

— Typically organized around customer/user groups, focused applications,
and key customer journeys

— High degree of autonomy and able to execute fast (daily/weekly releases),
typically agile/CI/CD

Platform development

— Shared enterprise capability and services typically organized around systems

— Execute slower, planned release schedules (monthly/quarterly), typically
waterfall

SOP

18 months

Faster
cycle

Slower
cycle

In-vehicle features

Internally and
externally developed
ECU features

Base OS

ECU-specific
operating system
and drivers

Electric/
electronics

ECUs and wiring for
energy and network

Mechanics

Physical vehicle
structure

Iterative
development
— Jira
— Bitbucket

Confluence Red Hat
Ansible

Automation

Jenkins Jira

Bamboo

1

6 7
8

9

14

10 1115

5

3

2

4

Inspect
and adapt

Production
orchestration
— kubernetes
— docker

13

12

Inspect
and adapt

Planning

Coding

Building

Continuous quality Adapt KPI feedback

Continuous improvement

Continuous integration
Development

Continuous deployment
In-field operations

Initial development before SOP Continuous evolution after SOP

Re
le

as
e

ga
tin

g

Automated deployment

V2X
specification

Requirements

Architecture

Development

Function
level

System level

Certification

Vehicle test

Function
test

System test

V2X
integration

1 9

2 8

3 7

4 6

5

V2X
specification

Requirements

Architecture

Development

Function
level

System level

Certification

Vehicle test

Function
test

System test

V2X
integration

13

15

12 14

3 months
10 11

Ecosystem PMO responsibility Engineering responsibility

Simplified

Jira

Polarion

CATIA

ENOVIA

Jenkins

Jira
Jira

Polarion

CATIA

ENOVIA

Jenkins

Jira

9Reality check: five approaches to the software-defined vehicle from the past decade

Approach 5: tool landscape transformation

Why did this approach
come about?
At its core, software and hardware development used
to be encapsulated with each department able to
build its own toolchain. The result was an array of tools
being used by various departments for management,
design, testing, and operations. OEMs managed to
work with as many as 1,000 different tools. With the
SDV, this encapsulation no longer works because of
the mass of interconnected software functions—
driving the need for one integrated toolchain that
could cater to the needs of an agile environment,
continuous software development, and integration
(see figure 5 on page 11).

What worked?
On the one hand, this approach brought about an
all-new level of focus on building single end-to-end
automated toolchains. Some OEMs were able to
reduce their set of core tools with a uniform
configuration; SDV leaders only use around 20 core
tools. It also helped integrate suppliers and external
companies, aiding their collaboration on a central
database and tools.

What didn’t work?
A recurring issue across all five of these approaches
is what happens when a new concept is paired with a
legacy mindset and organization. In the case of
toolchain transformation, the right tool was being
used in the wrong way. When organizations
implemented a new tool across points of the value
chain rather than considering the end-to-end
experience, the requirement engineering was not
well-connected to development and testing. The
common result was a range of tools customized to
different workflows that couldn’t be merged back
together and not the clear and connected portfolio
view across one fully automated toolchain.

10Reality check: five approaches to the software-defined vehicle from the past decade

Notes: HW is hardware. SW is software. OS is operating system. HiL is hardwire in the loop. SOP start of production. FSD is full self-driving.
ECU is electronic control unit.

Source: Kearney analysis

Figure 5
Approach 5: Tool landscape

Within development a small set of standard tools is leveraged, whereas testing, production, and operations require
custom build tools.

What’s new

Lean R&D tool landscape of ~20 development tools

Fully integrated tool chain for maximum automation and simulation

Central requirements management and tracking for HW and SW

Internally developed tools for tasks with no 100% stock fit

50:50 split in developed and sourced tools

Automotive
cloud

Development Production Operations

Requirements
and design

Development Integration
and testing

Management Updates Aftersales

Software OS
platform and
application
layer

Electronics -
Hardware
layer

Mechanics

1

1

2

3

4

4

5

5

One cloud
SW repo in
Bitbucket

Jenkins
automated
regression

testing

AWS host
managed via
Kubernetes
and Docker

Fleet
management
Tesla garage

aka “The
Mothership”

Fleet
management
Tesla garage

aka “The
Mothership”

Central
gateway data

collector
(status,

versions)

Supervision
and validation

via SW
routines Updated on-repair or if

required for new SW features
in Workshop or via

mobile team

e.g., FSD upgrade might
result in ECU exchange
if original HW is too oldUsage

monitoring
via vehicle

SW

Infotainment
and central

gateway
coordinate

Website,
app, and

vehicles as
omnichannel

shops

One vehicle
SW repo in
Bitbucket

Build and test
automation

via
Jenkins

CAD store
with Catia
and Enovia

Over
specified at
model SOP

and
continuously

optimized

Quarterly
update based

on in-field
learnings

Test
automation
via Jenkins,
Simulation,

and LabVIEW

Traceable documentation with Polarion, Jira, and Confluence

Self-build HiL
HW and
SW for
testing

Red Hat
Ansible for

daily updates
orchestration

Binary deltas
(Red

Bend) for
efficient

packaging

3 +

2

External tool Internal tool

11Reality check: five approaches to the software-defined vehicle from the past decade

So, what have we learned?

As we’ve seen over the past decade, the SDV industry
has come a long way. Chief among the many lessons
learned is that it’s not enough to focus on one aspect
of a transformation and that a brownfield approach
will fail. Instead, making progress and meeting future
challenges demands a comprehensive greenfield
approach with an MVP mindset while embracing
continuous integration and development (CI/CD)
working practices across the whole dev-ops cycle.
OEMs know what they want to develop, and going
greenfield means they don’t have to reinvent the
wheel but rather build on proven market standards
while reducing customization.

The whole transformation scope must focus on both
core functional and soft skills as outlined in this
article, which we have summarized below:

	— OEMs are more likely to succeed in developing a
software culture by carving out lean entities that
are independent from the wider organization’s
models and technology. Successful automotive
spin-offs lead to the emergence of the
“ambidextrous organization,” where one hand
sustains the existing business and the other has
the freedom to innovate. Any progress made by
the smaller software unit can then be brought into
the wider business while the degree of separation
helps mitigate risk should a project fail.

	— Achieving a full-stack view requires a well-planned
approach with one domain in focus, also referred
to as a “horizontal T” spike. The effectiveness of
this approach is clear in cases of neighborhood
electric vehicle (NEV) players, such as for autopilot
ADAS or customer-centric infotainment—functions
that are now seen as brand differentiators.

	— Decoupling new technologies from legacy systems
is essential. When hardware is tightly connected to
software, small changes can have big ripple
effects. Decoupling simplifies API management as
OEMs are no longer relying on hardware-linked
connections. To start a stepwise process of
decoupling, organizations should use what works
today while capitalizing on the robustness of
AUTOSAR and Linux. The transition toward fully
decoupled software and hardware vehicle systems
will produce a variety of opportunities for OEMs to
explore new technologies and shift functionality
into future-proofed pure software components.

Contact us if you would like to discuss these insights
and learn how we can help assess your level of
SDV excellence.

12Reality check: five approaches to the software-defined vehicle from the past decade

Sebastian Werner
CEO, BinaryCore
sebastian.werner@binarycore.com

Sven Kappel
Vice President; Head of Product Management,
Portfolio and Architecture – Software Defined
Vehicle, ETAS
sven.kappel@etas.com

Markus Menze
Global Head Solution Sales – Software Defined
Vehicle, ETAS
markus.menze@etas.com

Felix Kreichgauer
Partner, Kearney
felix.kreichgauer@kearney.com

Claudio Seitz
Head of Business Strategy and M&A, ETAS
claudio.seitz@etas.com

Authors

Co-brand authors

13Reality check: five approaches to the software-defined vehicle from the past decade

For more information, permission to reprint or translate this work,
and all other correspondence, please email insight@kearney.com.
A.T. Kearney Korea LLC is a separate and independent legal entity
operating under the Kearney name in Korea. A.T. Kearney operates
in India as A.T. Kearney Limited (Branch Office), a branch office of
A.T. Kearney Limited, a company organized under the laws of
England and Wales. © 2023, A.T. Kearney, Inc. All rights reserved.

About Kearney

Kearney is a leading global management consulting
firm. For nearly 100 years, we have been a trusted
advisor to C-suites, government bodies, and nonprofit
organizations. Our people make us who we are.
Driven to be the difference between a big idea and
making it happen, we help our clients break through.

kearney.com

About ETAS

Founded in 1994, ETAS GmbH is a wholly owned
subsidiary of Robert Bosch GmbH, represented in
12 countries in Europe, North and South America,
and Asia. The ETAS portfolio includes vehicle basic
software, middleware, development tools, cloud-
based operations services, cybersecurity solutions,
and end-to-end engineering and consulting services
for the realization of software-defined vehicles.
Our product solutions and services enable vehicle
manufacturers and suppliers to develop, operate,
and secure differentiating vehicle software with
increased efficiency.

etas.com

About BinaryCore

BinaryCore was born from a need to tackle complex
technology challenges businesses face in an era
when realizing the full value potential of software
engineering and cloud usage will clearly distinguish
the leaders from the laggards. But addressing these
challenges requires radical step change—a willingness
to unlearn what went before, an openness to new
possibilities and partnerships, and the confidence
to make bold decisions and rewrite the rules.

With deep technology expertise, powerful proprietary
software, a sharp focus on the numbers, and a clear
set of rules, we’ll guide you every step of the way to
transform your technology and talent set and put in
place the infrastructure and teams needed to set you
up for long-term success.

binarycore.com

kearney.com

